3) Развивающие цели урока математики.
Этот блок целей и задач связан с развитием основных, стержневых качеств личности, в формировании которых обучение математике занимает существенное место. В педагогике и психологии к развивающим относят цели, направленные на развитие мышления, воображения, памяти, внимания, наблюдательности, речи и других качеств личности ученика. Кроме того, именно к развивающему блоку целей следует отнести вооружение учащихся мировоззренческими знаниями, знаниями о процессе научного познания, о развитии математики как науки. К развивающим целям мы относим также формирование познавательного интереса учащихся к учению вообще и к изучению математики в частности.
Рассмотрим конкретизацию некоторых целей в частных задачах.
Развитие дедуктивного мышления.
Примерный перечень задач, которые конкретизируют данную цель: формировать умение выводить следствия из данных посылок; формировать умение анализировать учебный материал, вычленять сущность вопроса, конкретизировать (выделять частные случаи), схематизировать и структурировать учебный материал; формировать дисциплину и критичность мышления учащихся.
Развитие алгоритмического мышления.
Такая цель может быть поставлена и реализована в процессе обучения учащихся выполнению математических действий по определённому алгоритму.
Развитие эвристического мышления.
Эта цель может быть поставлена на уроках, где применяется проблемный подход, осуществляется обучение учащихся исследовательской деятельности, решаются нестандартные задачи.
Примерный перечень задач, направленных на достижение цели: познакомить учащихся с процессом научного познания, формировать представление учащихся о развитии знаний о числе, создать условия для развития интуиции учащихся, формировать умение формулировать гипотезы, формировать умение обосновывать свои догадки, свои утверждения и т.д.
Развитие речи.
Примерный перечень задач, соответствующих поставленной цели: развивать точность, лаконичность словесного выражения мысли учащихся; обогащать и усложнять словарный запас за счёт изучения новых терминов и символов; формировать умение аргументировать собственные выводы и выводы своих товарищей.
Развитие сенсорной сферы предполагает развитие глазомера; ориентировку в пространстве, точность и тонкость различения формы.
- Содержание
- Глава 1. Некоторые общие вопросы обучения математике в школе 7
- Глава 2. Теоретические основы формирования математической деятельности учащихся на уроке математики 40
- Глава 3. Математические понятия. Формирование математических понятий в школе 56
- Глава 4. Теоремы и их доказательства 85
- Глава 5. Задачи 129
- Предисловие
- Глава 1. Некоторые общие вопросы обучения математике в школе
- 1.1. Цели обучения математике. Принципы обучения
- 1) Значение математического образования в жизни человека.
- 2) Цели обучения математике в школе.
- 3) Цели обучения как системообразующий фактор процесса обучения.
- 4) Принципы обучения.
- 1.2. Содержание школьного курса математики. Программа по математике
- 1.3. Язык школьной математики. Развитие речи учащихся
- 1) О структуре математического языка.
- 2) Развитие речи учащихся в процессе обучения математике.
- 1.4. Развитие познавательного интереса к математике
- 1) Развитие познавательного интереса к изучению математики.
- 2) Мотивация деятельности учащихся на уроке.
- 1.5. Анализ содержания пункта учебника и системы упражнений к нему
- 1) Анализ содержания обучения как основа конструктивно-проектировочной деятельности учителя.
- 2) План анализа некоторой темы школьного курса математики (пункта учебника).
- 1.6. Планирование целей урока математики
- 1) Планирование целей урока математики.
- 2) Образовательные цели урока математики.
- 3) Развивающие цели урока математики.
- 4) Воспитательные цели урока математики.
- 1.7. Проект и конспект урока математики. Анализ урока математики
- 1) Проект и конспект урока.
- 2) Схема анализа урока математики (его фрагмента).
- Глава 2. Теоретические основы формирования математической деятельности учащихся на уроке математики
- 2.1. Учебно-познавательная деятельность учащихся на уроке, её структура
- 1) Учебно-познавательная деятельность, её структура.
- 2) Умения и навыки как результат овладения деятельностью. Теоретические основы формирования умений и навыков.
- 2.2. Типовой проект формирования математического действия
- 1) О типовом проекте формирования нового математического действия.
- Типовой проект формирования нового действия
- 2) Алгоритм как оод. Алгоритмическая деятельность.
- 2.3. Упражнения как средство формирования нового математического действия. Требования к проектированию системы упражнений
- 1) Упражнение. Система упражнений.
- 2) Система упражнений, направленная на формирование нового действия.
- 2.4. Анализ пункта учебника, в котором вводится новое действие, и системы упражнений к нему
- Глава 3. Математические понятия. Формирование математических понятий в школе
- 3.1. Сущность категории «понятие»
- 1) Роль и функции понятий в мышлении.
- 2) Трактовка категории «понятие» в психологии.
- 3) Процесс образования научных понятий.
- 3.2. Логическая структура математического понятия. Свойства и признаки понятия
- 1) О структуре математического понятия.
- 2) Логическая схема понятия.
- 3) Свойства и признаки понятия.
- 4) Необходимые и достаточные условия.
- 3.3. Основные этапы формирования понятия
- Характеристика этапов
- 3.4. Некоторые подходы к введению нового математического объекта
- 1) Конкретно-индуктивный подход.
- 2) Абстрактно-дедуктивный подход.
- 3) Исследовательский подход.
- 4) Пример применения каждого из подходов к введению одного и того же математического объекта.
- 5) Достоинства и недостатки каждого из подходов.
- 3.5. Теоретические основы изучения определения математического объекта (понятия)
- 1) О сущности определений.
- 2) Структура определений.
- 3) Определяющий признак, его структура.
- 4) Следствия из определения.
- 5) Отрицание определения.
- 6) Определения рабочие и нерабочие.
- 7) Эквивалентные определения.
- 3.6. Типовой проект введения нового математического объекта и изучения его определения
- 1) Анализ определения.
- Типовой проект введения нового объекта и изучения его определения
- 3.7. Уровни усвоения математического понятия
- 1) Усвоение понятия: что это такое?
- 2) Уровни усвоения математического понятия.
- Глава 4. Теоремы и их доказательства
- 4.1. Теоретические основы изучения теорем
- 1) Импликативные теоремы: виды, способы доказательства, краткая запись.
- 2) Основные способы доказательства истинности импликативных утверждений.
- 3) Теоремы общего вида.
- 4) Теоремы существования.
- 5) Теоремы единственности.
- 4.2. Дедуктивные рассуждения в обучении математике. Другие виды рассуждений
- 1) Рассуждения, структура рассуждений.
- 2) Дедуктивные рассуждения.
- 3) Недедуктивные рассуждения.
- 3) Анализ и синтез в процессе поиска доказательства теоремы.
- 4) Эвристическая беседа. Требования к системе вопросов учителя.
- 4.3. Доказательство, его структура. Анализ теоремы и её доказательства
- 1) Понятие «доказательство». Структура доказательства.
- 2) Требования к процессу доказательства математических утверждений.
- 3) План анализа теоремы.
- 4) План анализа доказательства теоремы.
- 4.4. Типовой проект изучения теорем и их доказательств
- 1) Типовой проект изучения теоремы и её доказательства.
- Типовой проект изучения теоремы и её доказательства
- 2) Подготовительный этап.
- 3) Работа над содержанием теоремы.
- Работа по изучению содержания теоремы в зависимости от её вида
- 3)Требования к построению чертежа по условию теоремы.
- 4.5. Характеристика этапов изучения доказательства теоремы
- 1) Поиск доказательства теоремы.
- 2) Доказательство теоремы.
- 3) Запись доказательства.
- 4) Применение теоремы.
- 5) Возможные обобщения теоремы, её включение в систему знаний.
- 4.6. Методические рекомендации по изучению теорем о свойствах и признаках понятий. Исследовательский подход к изучению свойств и признаков
- 1) Теорема о свойстве понятия.
- 2) Теорема о признаке понятия.
- 3) Исследовательский подход к изучению нового математического объекта, его свойств и признаков.
- 4.7. Различные формулировки одной и той же теоремы
- 1) Значение переформулировки теорем в процессе обучения математике.
- 2) Основные формулировки одной и той же теоремы.
- Глава 5. Задачи
- 5.1. Теоретические сведения о задачах
- 1) Понятие «задача». Структура задачи.
- 2) Классификации задач.
- 3) Процесс решения задачи.
- 4) Основные требования к решению задачи.
- 5) Условия, способствующие формированию умения решать задачи:
- 6) Роль и функции задач в обучении.
- 5.2. Задача как объект изучения. Типовой проект работы над задачей
- 1) Типовой проект работы над задачей.
- Типовой проект работы над задачей
- 3) Поиск решения задачи.
- 4) Запись решения задачи.
- 6) Анализ решения задачи. Обобщение результатов задачи.
- 5.3 Сюжетные задачи. Арифметический метод их решения
- 1) Что такое «сюжетная задача»?
- 2) Особенности решения сюжетных задач.
- 3) Характеристика арифметического способа решения сюжетных задач.
- 4) Задачи «на уравнивание».
- 5.4. Алгебраический метод решения сюжетных задач
- 1) Характеристика алгебраического метода решения сюжетных задач.
- 2) Некоторые рекомендации по решению задач алгебраическим методом.
- 3) Задачи «на движение».
- 4) Задачи «на работу».
- Итоговый тест
- Список литературы
- Владимирцева Светлана Александровна теоретические основы изучения содержания школьной математики
- 656049, Г. Барнаул, пр-т Социалистический, 85,