1) О структуре математического языка.
Успехи в обучении математике зависят от многих факторов, например, от возрастных и индивидуальных особенностей детей, от методики обучения. Одним из главных факторов является сам педагог, его деятельность. К личности педагога предъявляется ряд серьёзных требований. Основными среди них являются: любовь к детям, к педагогической деятельности; наличие хороших знаний математики; широкая эрудиция, высокоразвитый интеллект и высокий уровень общей культуры. Кроме того, педагог должен быть артистичным, общительным, иметь весёлый нрав, владеть словом, то есть правильно, ярко, образно выражать свои мысли в речи.
Речь учителя на уроке – это «смесь» русского языка с математическим языком. Язык математики и для учителя, и для учащихся является как бы иностранным. Для того чтобы «изъясняться на математическом языке» и обучать ему своих учащихся, учителю необходимо знать структуру математического языка, понимать его роль в изучении математики.
Математический язык возник под влиянием потребностей математики в точных, ясных, сжатых формулировках как результат усовершенствования естественного языка. Основная функция естественного языка – коммуникативная. Естественный язык – основное средство общения между людьми. Одна из основных функций математического языка – организующая. Математический язык необходим для работы с математическими моделями в различных областях знаний. Кроме того, математический язык отличается от естественного тем, что в математическом языке смысл и значение слова совпадают, тогда как в естественном языке можно придать слову иной смысл, изменив интонацию, употребив слово в определённом контексте. Математический язык отличается от естественного языка точностью, лаконичностью, наличием переменных.
Математический язык – это язык символов. Он состоит из особых знаков (букв алфавита) и правил, по которым из них выстраиваются аналоги слов и предложений естественного языка. Аналоги слов называются термами, аналоги предложений – формулами, из формул и термов с помощью логических операторов (,,, , , и др.) выстраиваются математические предложения. Изучением математических предложений занимается логика языка.
Язык школьного курса алгебры состоит из:
а) предметных постоянных: 0, 1, ..., 9, , , , Q, R, a, b, ..., [а,b], (a,b);
б) предметных переменных – букв (a, b, x, y, z, ...), которые употребляются для обозначения произвольного элемента данного множества;
в) функциональных букв (+, - , · , : , ...);
г) предикатных букв, обозначающих отношения между элементами множества (<, =, >, , , , ...);
д) знаков препинания (различного рода скобки, знаки препинания естественного языка: точка, запятая, точка с запятой и др.).
Язык школьной математики существенно отличается от языка математического. В школьном математическом языке используется неполный алфавит, нет многих математических знаков. В математическом языке нет слов естественного языка, школьная математика, наравне с математическим, использует и естественный язык. Язык школьной математики содержит такие термины и выражения, которых нет ни в математическом, ни в естественном языке. Например, «решить уравнение», «решить неравенство», «преобразовать многочлен в произведение многочленов» и др. Эти термины относятся к языку преподавания математики 22.
В школьном математическом языке часть знаков вводится в процессе изучения соответствующих теорий, например, знаки из языка теории множеств появляются в 7-м классе в теме «Решение линейных неравенств». Но часть терминов и знаков математического языка учитель вводит самостоятельно, нередко не разъясняя учащимся их точного смысла. К таким знакам относятся, например, знак импликации , знак логического следования и знак равносильности . Значение терминов «логическое следование», «равносильность» раскрывается в теме «Теоремы и их доказательства».
- Содержание
- Глава 1. Некоторые общие вопросы обучения математике в школе 7
- Глава 2. Теоретические основы формирования математической деятельности учащихся на уроке математики 40
- Глава 3. Математические понятия. Формирование математических понятий в школе 56
- Глава 4. Теоремы и их доказательства 85
- Глава 5. Задачи 129
- Предисловие
- Глава 1. Некоторые общие вопросы обучения математике в школе
- 1.1. Цели обучения математике. Принципы обучения
- 1) Значение математического образования в жизни человека.
- 2) Цели обучения математике в школе.
- 3) Цели обучения как системообразующий фактор процесса обучения.
- 4) Принципы обучения.
- 1.2. Содержание школьного курса математики. Программа по математике
- 1.3. Язык школьной математики. Развитие речи учащихся
- 1) О структуре математического языка.
- 2) Развитие речи учащихся в процессе обучения математике.
- 1.4. Развитие познавательного интереса к математике
- 1) Развитие познавательного интереса к изучению математики.
- 2) Мотивация деятельности учащихся на уроке.
- 1.5. Анализ содержания пункта учебника и системы упражнений к нему
- 1) Анализ содержания обучения как основа конструктивно-проектировочной деятельности учителя.
- 2) План анализа некоторой темы школьного курса математики (пункта учебника).
- 1.6. Планирование целей урока математики
- 1) Планирование целей урока математики.
- 2) Образовательные цели урока математики.
- 3) Развивающие цели урока математики.
- 4) Воспитательные цели урока математики.
- 1.7. Проект и конспект урока математики. Анализ урока математики
- 1) Проект и конспект урока.
- 2) Схема анализа урока математики (его фрагмента).
- Глава 2. Теоретические основы формирования математической деятельности учащихся на уроке математики
- 2.1. Учебно-познавательная деятельность учащихся на уроке, её структура
- 1) Учебно-познавательная деятельность, её структура.
- 2) Умения и навыки как результат овладения деятельностью. Теоретические основы формирования умений и навыков.
- 2.2. Типовой проект формирования математического действия
- 1) О типовом проекте формирования нового математического действия.
- Типовой проект формирования нового действия
- 2) Алгоритм как оод. Алгоритмическая деятельность.
- 2.3. Упражнения как средство формирования нового математического действия. Требования к проектированию системы упражнений
- 1) Упражнение. Система упражнений.
- 2) Система упражнений, направленная на формирование нового действия.
- 2.4. Анализ пункта учебника, в котором вводится новое действие, и системы упражнений к нему
- Глава 3. Математические понятия. Формирование математических понятий в школе
- 3.1. Сущность категории «понятие»
- 1) Роль и функции понятий в мышлении.
- 2) Трактовка категории «понятие» в психологии.
- 3) Процесс образования научных понятий.
- 3.2. Логическая структура математического понятия. Свойства и признаки понятия
- 1) О структуре математического понятия.
- 2) Логическая схема понятия.
- 3) Свойства и признаки понятия.
- 4) Необходимые и достаточные условия.
- 3.3. Основные этапы формирования понятия
- Характеристика этапов
- 3.4. Некоторые подходы к введению нового математического объекта
- 1) Конкретно-индуктивный подход.
- 2) Абстрактно-дедуктивный подход.
- 3) Исследовательский подход.
- 4) Пример применения каждого из подходов к введению одного и того же математического объекта.
- 5) Достоинства и недостатки каждого из подходов.
- 3.5. Теоретические основы изучения определения математического объекта (понятия)
- 1) О сущности определений.
- 2) Структура определений.
- 3) Определяющий признак, его структура.
- 4) Следствия из определения.
- 5) Отрицание определения.
- 6) Определения рабочие и нерабочие.
- 7) Эквивалентные определения.
- 3.6. Типовой проект введения нового математического объекта и изучения его определения
- 1) Анализ определения.
- Типовой проект введения нового объекта и изучения его определения
- 3.7. Уровни усвоения математического понятия
- 1) Усвоение понятия: что это такое?
- 2) Уровни усвоения математического понятия.
- Глава 4. Теоремы и их доказательства
- 4.1. Теоретические основы изучения теорем
- 1) Импликативные теоремы: виды, способы доказательства, краткая запись.
- 2) Основные способы доказательства истинности импликативных утверждений.
- 3) Теоремы общего вида.
- 4) Теоремы существования.
- 5) Теоремы единственности.
- 4.2. Дедуктивные рассуждения в обучении математике. Другие виды рассуждений
- 1) Рассуждения, структура рассуждений.
- 2) Дедуктивные рассуждения.
- 3) Недедуктивные рассуждения.
- 3) Анализ и синтез в процессе поиска доказательства теоремы.
- 4) Эвристическая беседа. Требования к системе вопросов учителя.
- 4.3. Доказательство, его структура. Анализ теоремы и её доказательства
- 1) Понятие «доказательство». Структура доказательства.
- 2) Требования к процессу доказательства математических утверждений.
- 3) План анализа теоремы.
- 4) План анализа доказательства теоремы.
- 4.4. Типовой проект изучения теорем и их доказательств
- 1) Типовой проект изучения теоремы и её доказательства.
- Типовой проект изучения теоремы и её доказательства
- 2) Подготовительный этап.
- 3) Работа над содержанием теоремы.
- Работа по изучению содержания теоремы в зависимости от её вида
- 3)Требования к построению чертежа по условию теоремы.
- 4.5. Характеристика этапов изучения доказательства теоремы
- 1) Поиск доказательства теоремы.
- 2) Доказательство теоремы.
- 3) Запись доказательства.
- 4) Применение теоремы.
- 5) Возможные обобщения теоремы, её включение в систему знаний.
- 4.6. Методические рекомендации по изучению теорем о свойствах и признаках понятий. Исследовательский подход к изучению свойств и признаков
- 1) Теорема о свойстве понятия.
- 2) Теорема о признаке понятия.
- 3) Исследовательский подход к изучению нового математического объекта, его свойств и признаков.
- 4.7. Различные формулировки одной и той же теоремы
- 1) Значение переформулировки теорем в процессе обучения математике.
- 2) Основные формулировки одной и той же теоремы.
- Глава 5. Задачи
- 5.1. Теоретические сведения о задачах
- 1) Понятие «задача». Структура задачи.
- 2) Классификации задач.
- 3) Процесс решения задачи.
- 4) Основные требования к решению задачи.
- 5) Условия, способствующие формированию умения решать задачи:
- 6) Роль и функции задач в обучении.
- 5.2. Задача как объект изучения. Типовой проект работы над задачей
- 1) Типовой проект работы над задачей.
- Типовой проект работы над задачей
- 3) Поиск решения задачи.
- 4) Запись решения задачи.
- 6) Анализ решения задачи. Обобщение результатов задачи.
- 5.3 Сюжетные задачи. Арифметический метод их решения
- 1) Что такое «сюжетная задача»?
- 2) Особенности решения сюжетных задач.
- 3) Характеристика арифметического способа решения сюжетных задач.
- 4) Задачи «на уравнивание».
- 5.4. Алгебраический метод решения сюжетных задач
- 1) Характеристика алгебраического метода решения сюжетных задач.
- 2) Некоторые рекомендации по решению задач алгебраическим методом.
- 3) Задачи «на движение».
- 4) Задачи «на работу».
- Итоговый тест
- Список литературы
- Владимирцева Светлана Александровна теоретические основы изучения содержания школьной математики
- 656049, Г. Барнаул, пр-т Социалистический, 85,