3.1.2 Основные идеи количественной и порядковой теорий
натурального числа
Количественная теория
Г. Кантор, XИX в. Основные понятия – множество, взаимно-однозначное соответствие.
В том случае, если каждому элементу множества Х соответствует единственный элемент из множества У, то говорят, что между этими множествами установлено взаимно-однозначное соответствие.
Рассмотрим 2 бесконечных множества:
множество натуральных чисел 1, 2, 3, 4, 5,…n, … (1)
множество четных натуральных чисел 2, 4, 6,…2n, … (2)
(2) является подмножеством (1).
Так как ряд четных чисел можно пронумеровать с помощью натуральных чисел, то между этими двумя множествами можно установить взаимно-однозначное соответствие. Если между множеством и его некоторым подмножеством нельзя установить взаимно-однозначное соответствие, то множество является конечным.
Если между двумя конечными множествами можно установить взаимно-однозначное соответствие, то эти множества называются равночисленными.
Отношение «быть равночисленными» на множестве всех множеств является рефлексивным, симметричным, транзитивным, а значит, является отношением эквивалентности. Поэтому отношение «быть равночисленным» разбивает множество всех множеств на классы. В эти классы попадут самые различные множества. Общее между ними – одинаковое количество элементов (в класс «5» − 5 цветов, 5 пальцев).
Натуральным числом называют общее свойство класса не пустых, конечных, равночисленных множеств.
Покажем, как операции над числами определяются через операции над множествами.
Обозначим через n(А) количество элементов в множестве А.
Введем операцию сложения над числами через операцию объединения над множествами.
Суммой чисел a и b называется количество элементов в объединении множеств А и В, которое равно
а + b = n(АВ) = n(А) + n(В), при условии, что АВ = .
Порядковая теория натурального числа
Джузеппе Пеано, XИX в. Основные понятия: единица (е), операции: непосредственно следовать за, сложение, умножение.
В основе теории – аксиомы Пеано, которые являются свойствами натурального ряда чисел.
1 аксиома. Единица непосредственно не идет ни за каким натуральным числом.
2 аксиома. Любое натуральное число непосредственно следует не более, чем за одним натуральным числом.
3 аксиома. Если к натуральному числу х добавить 1, то получим непосредственно следующее натуральное число х', т.е. х + 1= х'.
4 аксиома. С помощью добавления единицы к натуральному числу можно получить весь ряд натуральных чисел.
5 аксиома. Если натуральное число х умножить на 1, то получим само натур. число, т.е. х∙1 = х.
х + у' = х + (у + 1) = (х + у) + 1 = (х + у) '
Мы видим, что в количественной теории понятие числа определяется через множество, а операции над числами − через операции над множествами. В порядковой теории дан принцип образования каждого числа, понятие числа определяется через систему аксиом.
Познание ребенком понятия числа происходит одновременно в рамках количественной и порядковой теорий.
- Содержание
- Предисловие
- Программный материал
- 1 Содержание учебного материала
- Тема 3. Значение, цель и задачи формирования элементарных математических представлений у детей дошкольнога возраста
- Раздел III. Ознакомление детей разного возраста с множеством
- Тема 7. Генэзис представлений о множестве у детей от раннего возраста до школы
- Тема 8. Современные методические подходы к формированию у детей разного возраста представлений о множестве
- Раздел IV. Методические системы ознакомления детей
- Тема 9. Особенности развития у дошкольников количественных представлений, представлений о числе и счете
- Тема 10. Современные методические подходы к обучению дошкольников счету, ознакомлению с цифрами, с составом числа
- Тема 11. Формирование у старших дошкольников вычислительных действий
- Раздел V. Развитие у дошкольников представлений о величине предметов, сравении и измерении величин
- Тема 12. Генезис представлений о величине у детей раннего и дошкольного возраста
- Тема 13. Методические подходы к развитию представлений о спосабах сравнения величин
- Тема 14. Методика обучения детей измерению величин с помощью условной мерки
- Тема 25. Педагогическое проектирование процесса предматематической подготовки дошкольника
- Тема 26. Средства методической реализации содержания развития математических представлений у детей дошкольного возраста
- Тема 27. Разноуровневая и коррекционная работа с детьми дошкольного возраста по развитию математических представлений
- 2 Примерный тематический план
- Часть курс лекций
- 1 Содержание предматематической подготовки детей раннего и дошкольного возраста
- 1.1 Общая характеристика содержания
- 1.2 Предлогическая подготовка
- 6.3 Докомпьютерная подготовка
- 2 Формы организации развития математических представлений у дошкольников
- 3 Множество. Число. Счет
- 3.1 Из истории развития количественных представлений
- 3.1.1 Этапы исторического развития числа
- 3.1.2 Основные идеи количественной и порядковой теорий
- 3.1.3 Нумерации
- 3.1.4 Системы счисления
- 3.2 Теория множеств
- 3.2.1 Множество. Отношения между множествами
- 3.2.2 Операции над множествами
- 3.2.3 Отношения между элементами множества. Свойства отношений
- 3.2.4 Отношения эквивалентности и порядка
- 3.2.5 Разбиение множества на классы
- 3.3 Возрастные особенности развития количественных представлений у детей
- Представления о множестве объектов
- 3.3.2 Развитие у детей деятельности счета
- 3.3.3 Развитие понятия числа
- 3.3.4 Развитие представлений о натуральном ряде чисел
- 3.4 Методика развития количественных представлений
- 3.4.1 Развитие умения группировать предметы (2 – 5 лет)
- 3.4.2 Развитие представлений о множественности
- 3.4.3 Развитие умения выделять 1 и много предметов
- 3.4.4 Развитие умения сравнивать две группы предметов по количеству, путем установления взаимно-однозначного
- 3.4.6 Методика обучения отсчитыванию предметов (4–6 лет)
- 3.4.7 Методика обучения порядковому счету (4–6 лет)
- 3.4.8 Методика ознакомления с цифрами (3–5 лет)
- 3.4.9 Развитие представлений о составе числа из отдельных единиц в пределах 5 (5–6 лет)
- 3.4.10 Развитие представлений о составе целого множества из частей (5–6 лет)
- 3.4.11 Развитие представлений об отношениях между
- 3.4.12 Развитие понимания сохранения количества (4–6 лет)
- 3.4.13 Обучение счету предметов с помощью различных
- 3.4.14 Обучение делению предметов на равные части (4–6 лет)
- 3.4.15 Развитие умения находить элементы пересечения, объединения, разности двух множеств
- 3.4.16 Различные подходы к содержанию и методам развития количественных представлений у детей дошкольного возраста
- 4 Величины. Сравнение. Измерение
- 4.1 Этапы исторического развития способов измерения величин. Происхождение названий единиц измерения величин
- 4.2 Понятие величины, свойства однородных величин
- 4.3 Возрастные особенности представлений о величине у детей
- 4.4 Методика развития представлений о величине предмета и измерении величин у детей дошкольного возраста
- 4.4.1 Развитие умения использовать правильные названия конкретных протяженностей и правильно их показывать (2–4 года)
- 4.4.2 Развитие умения сравнивать два предмета по длине, ширине, высоте, толщине при помощи приемов приложения и наложения (3–4 года)
- 1 Этап. Прием приложения.
- 4.4.3 Сравнение двух предметов по массе (2–5 лет)
- 4.4.4 Развитие умения упорядочивать более двух предметов по размеру и массе (2–6 лет)
- 4.4.5 Развитие умения сравнивать величины предметов с помощью условной мерки-посредника (4–5 лет)
- 4.4.6 Развитие умения сравнивать и измерять предметы по величине с помощью условной мерки как единицы измерения (5–6 лет)
- 4.4.8 Развитие умения сравнивать предметы по трем измерениям (5–6 лет)
- 4.4.9 Развитие понимания неизменности (сохранения) величины объекта (массы, длины, площади, объема) при изменении его формы (5–6 лет)
- 4.4.10 Различные подходы к содержанию развития представлений о величине у детей
- 5 Форма. Геометрические фигуры
- 5.1 Из истории развития геометрии. Происхождение названий геометрических фигур и их определение
- 5.2 Возрастные особенности развития представлений о форме предметов и геометрических фигурах у детей
- 5.3 Методика ознакомления с геометрически фигурами и формой предметов
- 5.3.1 Этапы ознакомления детей с геометрически фигурами
- 5.3.2 Методика ознакомления детей со свойствами геометрических фигур
- 5.3.3 Пример ознакомления с кругом.
- 5.3.4 Различные подходы к содержанию и методам развития геометрических представлений у детей дошкольного возраста
- 6 Ориентировка в пространстве
- 6.1 Возрастные особенности развития пространственных представлений у детей раннего и дошкольного возраста
- 6.2 Методика развития умения ориентироваться в пространстве
- 6.2.1 Развитие умения различать правую и левую стороны тела (3–4 года)
- 6.2.2 Развитие умения ориентироваться относительно себя (3–5 лет)
- 6.2.3 Развитие умения двигаться в заданном направлении (4–6 лет)
- 6.2.4 Развитие умения занимать положение в пространстве по заданному условию (5–6 лет)
- 6.2.5 Развитие умения ориентироваться относительно других объектов (4–6 лет)
- 6.2.6 Развитие умения ориентироваться в двухмерном пространстве (3–6 лет)
- 6.2.7 Знакомство с некоторыми правилами дорожного движения
- 6.2.8 Различные подходы к содержанию и методам развития пространственных представлений у детей дошкольного возраста
- 7 Ориентировка во времени
- 7.1 Из истории способов измерения времени. Происхождение названий единиц измерения времени
- 7.2 Возрастные особенности развития у детей представлений о времени
- 7.3 Методика развития умения ориентироваться во времени
- 7.3.1 Введение названий временных единиц в пассивный словарь детей (1 этап)
- 7.3.2 Ознакомление с характерными свойствами единиц измерения времени (3–5 лет)
- 7.3.3 Развитие представлений о последовательности временных единиц (4–6 лет)
- 7.3.4 Ознакомление с обобщающими временными единицами: сутки, неделя, год (5–6 лет)
- 7.3.5 Методика развития представлений о понятиях «вчера, сегодня, завтра»
- 7.3.6 Различные подходы к содержанию и методам развития временных представлений у детей дошкольного возраста
- 8 Содержание и методы работы по математике с детьми 6-летнего возраста
- Знакомство с величиной
- Геометрические фигуры
- Ориентировка в пространстве
- Ориентировка во времени
- 9 Преемственность в обучении математике в начальной школе и дошкольных учреждениях
- Из истории развития методики формировапния математических представлений у детей дошкольного возраста
- Взгляды педагогов-новаторов на обучение математике детей дошкольного возраста
- Развитие математических способностей детей дошкольного возраста
- Практическое занятие № 2 Логико-математическое развитие детей дошкольного возраста
- Практическое занятие № 3 Современные подходы к реализации педагогических принципов отбора содержания и организацыи процесса предматематической подготовки дошкольников
- Практическое занятие № 4 Понятия. Умозаключения
- Практическое занятие № 5 Множество. Число. Цифра
- Практическое занятие № 6 Геометрические фигуры
- Практическое занятие № 7 Величины, их свойства. Измерения величин
- Практическое занятие № 8 Методика развития у дошкольников представлений о множестве
- Практическое занятие № 9 Методика обучения разным видам счета. Знакомство с числами
- 4. Составление собственного конспекта комплексного занятия. Лабораторное занятие № 1 Методика развития у дошкольников представлений о множестве
- Практическое занятие № 11 Методика обучения обследованию и сравнению величин и установлению отношений по величине
- 4. Составление собственного конспекта комплексного занятия.
- Практическое занятие № 12
- Методика обучения построению сериационных рядов.
- Развитие глазомера
- 4. Составление собственного конспекта комплексного занятия. Практическое занятие № 14 Развитие математических представлений через игру
- Лабораторное занятие № 4 Методика развития представлений о величинах и способах их сравнения
- Лабораторное занятие № 5 Методика развития представлений о способах измерения величин и закономерностях, вытекающих из отношений между величинами
- 4. Составление собственного конспекта комплексного занятия. Практическое занятие № 16 Методика развития представлений о форме предметов и объёмных геометрических фигурах
- Лабораторное занятие № 6 Методика ознакомления детей с трансфигурацией, обучение конструированию фигур из палочек
- Практическое занятие № 17 Методика развития пространственных представлений у дошкольников
- Лабораторное занятие № 7 Методика развития умения ориентироваться в двухмерном пространстве у дошкольников
- Практическое занятие № 18 Методика развития умения ориентироваться во времени
- Лабораторное занятие № 8 Развитие умения ориентироваться во времени
- Практическое занятие № 19 Развитие математических представлений через игру
- Лабораторное занятие № 9 Тематический комплекс и занятие по индивидуальной тетради как формы развития математических представлений у дошкольников
- Практическое занятие № 20 Методика обучения математике детей 6-летнего возраста
- Практическое занятие № 21 Методы выявления уровня развития математических представлений у дошкольников
- Планирование процесса развития математических представлений у детей в разных возрастных группах дошкольного учреждения
- Практическое занятие № 24 Организация развлечений с математическим содержанием и самостоятельной творческой деятельности детей
- Практическое занятие № 25 Анализ организации процесса развития математических представлений у дошкольников
- Лабораторное занятие № 10 Определение уровня развития математических представлений у детей дошкольного возраста
- Часть VI задания для управляемой самостоятельной работы студентов
- Список индивидуальных заданий (проектов)
- Часть V контрольные тесты*
- 1. Теоретические основы развития
- Часть V схемы и образцы
- 2. Схема и образец обучающей ситуации (в разных видах деятельности вне занятий)
- 3. Схема и образец комплексного занятия
- Список литературы