logo

2. Однозначные числа

Числа первого десятка называют однозначными. Они обозначены одной цифрой: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Поскольку число обозначает количественную характеристику множества, его называют количественное натуральное число. (Если мы хотим получить ответ на вопрос: «Сколько?», речь идет о количественном числе.)

Фактически при счете элементов множества происходит процесс их нумерации.

Счет — это процесс упорядочивания множества путем присвоения каждому элементу определенного номера. Таким образом, понятие числа также неразрывно связано с представлением о порядке, упорядочивании элементов множества. В этом случае натуральное число представляет собой порядковый номер некоторого элемента и называется в силу этого порядковым числом.

Количественное и порядковое числа взаимосвязаны, при пересчете элементы конечного множества не только расставляются в определенном порядке, но и устанавливается также, сколько элементов содержит множество (последний порядковый номер, называемый при счете, является характеристикой количества элементов множества).

Например: последнее яблоко — пятое, значит их всего пять.

Эти две роли натурального числа нашли отражение в русском языке: порядковые натуральные числа выражаются порядковыми числительными (первый, второй, третий и т. д.), количественные — количественными числительными (один, два и т. д.)

Процесс счета подчиняется определенным правилам:

1) первому отмеченному предмету ставится в соответствие число 1 (наименьшее натуральное число);

2) на каждом следующем шаге отмечается (нумеруется) предмет, еще не отмеченный ранее (нельзя считать один и тот же предмет дважды);

3) ему ставится в соответствие число, следующее за последним из уже названных (натуральные числа расположены в строгом равномерном порядке).

Данные правила определяют принцип образования чисел в натуральном ряду: каждое следующее число на единицу больше предыдущего.

Усвоение ребенком этого принципа является центральной задачей изучения нумерации первого десятка в школе.

Следствием этого принципа является идея бесконечности ряда натуральных чисел (как бы ни было велико число, всегда можно найти следующее, добавив к нему единицу), а также способ нахождения значений выражений вида 5 + 1;8+1;6-1;7-1ит. п. путем называния либо следующего, либо предыдущего числа. Иными словами, для нахождения значения данных выражений нет необходимости выполнять какой-то прием арифметических действий, достаточно понимать, что добавление 1 ведет к получению следующего по счету числа, а убавление 1 — означает возврат к предыдущему по счету числу. Именно для получения результатов в таких выражениях ребенок заучивал наизусть названия чисел в прямом и обратном порядке.

В умение считать входят: знание слов-числительных, знание («запомненность») порядка их называния при счете, понимание смысла процесса нумерации элементов множества, понимание того, что последний названный номер является характеристикой количественного состава множества, и умение соблюдать правила счета.

Большая часть нагрузки при освоении счета приходится на механическую память, т. е. процесс обучения счету в большой мере репродуктивен (опирается на память, а не на мыслительные операции). Для того чтобы ребенок не осваивал его на формальном уровне, на первых порах этот процесс следует обязательно сопровождать предметными действиями: откладыванием, показыванием, а также проговариванием вслух.

Следует помнить, что можно предлагать ребенку посчитать двойками, десятками и т. п., но нельзя говорить: «Посчитай от 10 обратно». Процесс счета «векторный», т. е. возможен по определению только в сторону увеличения номеров. Перечисление названий чисел в обратном порядке не является счетом, поскольку слово-числительное, названное при счете последним, является ответом на вопрос «Сколько?», т. е. характеризует количество предметов данной совокупности.

Умение называть числительные в обратном порядке является базовым для обучения ребенка процессу отсчитывания, поэтому формировать такое умение необходимо, но формулировать задание следует в виде: «Назови числа в обратном порядке». (Но не «посчитай»!) Таким же образом формулируются задания: «Назови числа от 6 до 9» и т. п. (Но не «посчитай от 6 до 9».)