3. Вычислительные приемы для чисел второго десятка
Разрядные случаи сложения и вычитания
Разрядными случаями сложения и вычитания во втором десятке считаются случаи вида:
10 + 2 2+10 12 — 2 12-10
При нахождении значения данных выражений ссылаются на разрядный (десятичный) состав чисел второго десятка. Например:
12 значит, 12 -10-2 10 + 2 - 12
/\ 12-2=10 2 + 10=12
10 2
Комплексные примеры на применение знания разрядного состава и вычислительных приемов первого десятка:
Вычисли: 2 + 8 + 3 = ...
Способ вычислений:
Действия выполняются последовательно слева направо. 2 + 8 = = 8 + 2 = 10 по свойству перестановки слагаемых. 10 + 3 = 13
Вычисли: 17 — 7 — 1=...
Способ вычислений:
Действия выполняются последовательно слева направо. Число 17 состоит из 10 и 7, значит 17 - 7 = 10. Вычитая из 10 один, получаем число предыдущее — это 9.
Переход через десяток
Наиболее сложным для большинства детей является прием сложения и вычитания с переходом через десяток. Это случаи вида: 8 + 5,13 - 7.
Сложение с переходом через десяток
Схема приема: 8 + 5=10 + 3=13
Алгоритм приема (правило вычислений) содержит три последовательно выполняемых вычислительных действия:
1) второе слагаемое раскладывается на составные части таким образом, чтобы одна из частей в сумме с первым слагаемым составила число 10;
2) первое слагаемое складывается с частью второго слагаемого, образуя промежуточное число 10;
3) к промежуточному числу 10 прибавляется оставшаяся часть первого слагаемого (во всех случаях здесь имеет место разрядное суммирование) для получения окончательного ответа.
Для овладения приемом ребенок должен: 1) запомнить последовательность действий; 2) уметь быстро подбирать подходящий случай разложения любого однозначного числа на составные части (знать состав однозначных чисел); 3) уметь дополнять любое однозначное число до 10 (знать состав числа 10); 4) уметь выполнять разрядное сложение в пределах второго десятка.
Многие дети испытывают большие трудности при освоении этого сложносоставленного приема вычислений. В качестве внешней опоры можно использовать линейку. Ориентируясь по линейке, ребенок отмечает первое слагаемое, а затем делает вправо от него нужное количество «шагов» (в соответствии со значением второго слагаемого). Результат последнего «шага» совпадает со значением суммы. Аналогична можно использовать счеты.
Некоторые дети (ведущие кинестетики, о которых говорилось выше) с успехом продолжают использовать пальцевый счет. В этом случае они присчитывают к первому слагаемому единицы, пока хватает пальцев (до 10), а затем, мысленно запоминая полученный десяток, продолжают присчитывать оставшуюся часть второго слагаемого уже к десятку: 8 да еще два пальца — 9,10. Переход на другую руку — еще три пальца — 11, 12, 13. Фактически этот способ счета моделирует присчитывание по одному, как и использование линейки. При прибавлении чисел больше 5 этот способ несколько тормозит работу ребенка, но по крайней мере дает ему возможность самостоятельно получить результат действия.
В настоящее время на первый план в педагогике начального обучения выходят требования организации личностно-ориентированного обучения, это означает, что в обучающем процессе необходимо учитывать своеобразие и индивидуальность способа мышления и ведущего способа познания каждого ребенка. Дети с превалирующей функцией аналитического мышления легко осваивают этот прием, требующий пошагового выполнения трехступенчатого действия в уме. Дети с превалирующей функцией синтетического мышления осваивают прием с большими трудностями. В некоторых альтернативных учебниках математики для начальных классов
(в первых изданиях стабильного учебника 1968 г., в современных учебниках Н.Б. Истоминой) предлагается знакомить детей с этим приемом значительно позже — после того, как они освоят всю нумерацию в пределах 100 и научатся выполнять все виды вычислений без перехода через десяток, в том числе и вида 64 + 12.
Методически ставится задача довести умение ребенка выполнять вычисления во втором десятке до автоматизма. Это означает, что учитель, как правило, ставит задачу — выучить результаты всех случаев сложения и вычитания в пределах второго десятка наизусть. С этой целью в учебнике на каждом уроке этой темы (начало второго класса) дается по три случая для заучивания наизусть. Например: 9 + 2 = 11, 9 + 3 = 12,8 + 3 - 11.
Всего случаев, требующих запоминания 20. Во всех этих случаях второе слагаемое меньше, чем первое (в случае, когда второе слагаемое больше первого, можно применить перестановку слагаемых).
9 + 2 = | 11 | 9 + 3 = | 12 | 8 + 3 = | И |
|
7 + 4 = | 11 | 8 + 4 = | 12 | 9 + 4 = | 13 |
|
9 + 5 = | 14 | 8 + 5 = | 13 | 7 + 5 = | 12 | 6 + 5 =11 |
9 + 6 = | 15 | 8 + 6 = | 14 | 7 + 6 = | 13 | 6 + 6 =12 |
9 + 7 = | 16 | 8 + 7 = | 15 | 7 + 7 = | 14 |
|
8 + 8 = | 16 | 9 + 8 = | 17 | 9 + 9 = | 18 |
|
В качестве приема, помогающего некоторым детям быстрее запомнить результаты этих вычислений, можно использовать прием опоры на сумму одинаковых слагаемых, поскольку сумма одинаковых слагаемых запоминается детьми значительно легче, чем сумма разных слагаемых.
Например, легко запоминается сумма 5 + 5=10. Рассматривая любую сумму, в которой одно из слагаемых — число 5 и зная свойство суммы:
При увеличении любого слагаемого на несколько единиц сумма увеличивается на столько же единиц.
Можно получить значение соответствующего выражения:
7 + 5 = 5 + 5 + 2 = 10 + 2= 12
Дети легко запоминают суммы: 6 + 6 = 12 7 + 7 = 14 8 + 8=16 9 + 9=18
Используя их как «базовые», ребенок может получить нужный результат присчитывая соответствующее количество единиц к сумме или отсчитывая: 8 + 9 = 8 + 8+1 = 16+1 = 17.
Вычитание с переходом через десяток
Схема приема: 14 — 9 = 5
4 5
Алгоритм приема (правило вычислений) содержит три после-довательно выполняемых вычислительных действия:
1) вычитаемое раскладывается на составные части таким образом, чтобы одна из частей при вычитании из уменьшаемого составила число 10;
2) из уменьшаемого вычитается часть вычитаемого, образуя промежуточное число 10;
3) из промежуточного числа 10 вычитается оставшаяся часть вычитаемого для получения окончательного ответа.
Для овладения приемом ребенок должен:
1) запомнить последовательность действий;
2) уметь быстро подбирать подходящий случай разложения любого однозначного числа на составные части (знать состав однозначных чисел);
3) уметь выполнять разрядное вычитание в пределах второго десятка;
4) уметь вычитать любое однозначное число из 10 (знать состав числа 10).
Многие дети испытывают большие трудности при освоении этого сложносоставленного приема вычислений. В качестве внешней опоры можно использовать линейку. Ориентируясь по ней, ребенок отмечает уменьшаемое, а затем делает влево от него нужное количество «шагов» (в соответствии со значением вычитаемого). Результат последнего «шага» совпадает со значением разности. Аналогично можно использовать счеты.
Некоторые дети (кинестетики) с успехом продолжают использовать пальцевый счет и при выполнении вычитания во втором десятке. В этом случае они, имея в виду десяток «в уме», в случае нехватки пальцев, занимают «пятки» и продолжают отсчитывать, пока не отсчитают нужное количество пальцев (в соответствии со значением вычитаемого).
Другая схема выполнения вычитания с переходом через десяток
Алгоритм приема (правило вычислений) и в этом случае содержит три последовательно выполняемых вычислительных действия:
1) уменьшаемое раскладывается на разрядные составляющие;
2) от десятка уменьшаемого отнимается вычитаемое, которое всегда меньше 10, образуя промежуточное число;
3) промежуточное число складывается с оставшейся частью уменьшаемого для получения окончательного ответа.
Для овладения приемом ребенок должен:
1) запомнить последовательность действий;
2) уметь раскладывать числа второго десятка на разрядные составляющие;
3) уметь выполнять вычитание в пределах 10;
4) уметь складывать однозначные числа в пределах 10. Перечень действий содержит такое же количество шагов, как
и в случае первой схемы, но многим детям использовать этот способ легче, поскольку он не требует мысленного подбора подходящего разложения на составные части вычитаемого. Логика действий здесь последовательная, больше соответствует синтетическому стилю мыслительной деятельности, поэтому часть детей осваивает этот способ значительно легче, чем первый.
В целом таблица вычитания с переходом через десяток содержит 36 случаев, которые предлагаются детям для запоминания наизусть. Запоминание такого большого количества случаев для многих детей представляет большую проблему.
Дети, успешно использовавшие прием опоры на значения сумм одинаковых слагаемых, могут использовать этот же прием при выполнении вычитания.
Например:
16 — 7 = (8 + 8) — 7 = 1 + 8 = 9
(16 это два раза по 8 Из одной восьмерки заберем 7, останется I Да еще оставалась одна восьмерка, вместе — 9.)
Освоение способов вычислений с переходом через десяток составляет базу для дальнейшего освоения устной вычислительной деятельности в пределах 100 и письменных вычислений.
Порядок действий в выражениях со скобками
Вторым правилом, определяющим порядок выполнения действий в выражениях, является правило выполнения действий в выражениях со скобками:
Действие, записанное в скобках, выполняется первым.
С этим правилом дети знакомятся во 2 классе.
Правило сообщается детям в качестве непреложного факта и путем сравнения разных вариантов значений выражений, показывается, что нарушение этой установки ведет к получению неправильных результатов.
Например:
(10-6) + 3 = 7 10-(6 + 3)= 1
Никаких нарушений этого правила во втором классе не допускается.
С математической точки зрения скобки в первом приведенном выше примере не играют никакой роли и могут быть опущены, поскольку правило выполнения действий в выражениях, содержащих более одного арифметического действия требует, чтобы первым выполнялось вычитание, а вторым — сложение. Во втором выражении наличие скобок меняет порядок действий, оговоренный ранее, и требует первым выполнить сложение, т. е. в этом случае скобки имеют значение. "
Чтобы не путать ребенка разнородными указаниями, учитель обычно настаивает на приучении детей к жесткому соблюдению этого правила во всех случаях, чтобы создать стереотип восприятия скобок. Так, для выполнения вычислений вида 9 + (2 + 5) также жестко требуется выполнение действия в скобках первым, хотя технически было бы проще использовать группировку слагаемых, тем более, что математически порядок действий при последовательном сложении безразличен.
Установка на приоритетность выполнения действия в скобках сохраняется на весь период обучения ребенка в начальной школе.
Родители, помня, что в математике при выполнении алгебраических преобразований в старших классах используют правила раскрытия скобок, часто пытаются учить этим правилам младших школьников, поскольку эти правила существенно упрощают вычисления во многих случаях. Методически это нецелесообразное действие, поскольку в третьем и четвертом классе дети изучают еще несколько правил порядка выполнения действий и вычислительных операций, основанных на приоритетности выполнения действий в скобках.
Два разнородных указания на способ действий при наличии скобок в выражениях может запутать ребенка. При этом само понятие «смена знака» при раскрытии скобок подразумевает, что ребенок знает о существовании чисел разных знаков (положительных и отрицательных), а также понимает смысл операции смены знака.
Поскольку в начальных классах дети знакомятся только с натуральными числами, все эти операции не могут быть объяснены без знакомства с отрицательными числами, их свойствами и действиями с ними. А это уже программа 5—6 классов школы.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература