1. Смысл действия умножения
Действие умножения рассматривается как суммирование одинаковых слагаемых.
По определению умножение целых неотрицательных чисел (натуральных) — это действие, выполняющееся по следующим правилам:
а •b = a+ a+ a+ a+ a ...+ а, при b > 1
b слагаемых
а •1 = а, при b = 1
а•0 = 0, при b = 0
Использование символики умножения позволяет сократить запись сложения одинаковых слагаемых.
Запись вида 2-4 = 8 подразумевает сокращение записи вида 2 + 2 + 2 + 2 = 8. Ее читают так: «по 2 взять 4 раза, получится 8»; или: «2 умножить на 4 получится 8».
Действие умножения во всех учебниках математики для начальных классов рассматривают ранее действия деления.
С теоретико-множественной точки зрения умножению соответствуют такие предметные действия с совокупностями (множествами, группами предметов) как объединение равных (равночисленных) совокупностей. Поэтому, прежде, чем знакомиться с символикой записи действий и вычислениями результатов действий, ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов учителя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.
Виды заданий, которые предлагаются детям до знакомства с символикой действия умножения (в 1 и 2 классе):
1. Посчитай двойками (тройками, пятерками).
2. Нарисуй рисунок: «На трех тарелках по 2 апельсина». Сосчитай, сколько всего апельсинов.
3. Найди лишнюю запись:
2 + 2
2 + 2 + 2
2+2+2+2
2+3+2+2+2
Найди значение каждого выражения наиболее удобным способом.
4. Сделай запись выражения по рисунку:
Виды заданий, используемых для усвоения ребенком смысла умножения при знакомстве с этим действием:
а) На соотнесение рисунка и математической записи:
Рассмотри рисунок и объясни записи:
2 + 2 + 2 + 2 + 2 = 10и2.5 = 10 5 + 5= 10и5-2= 10
4 + 4 + 4 = 12 4-3=12
б) На нахождение суммы одинаковых слагаемых: Рассмотри рисунки и закончи записи:
6+6+6=.
6-3 = .
в) На замену сложения умножением:
Замени, где возможно сложение умножением и вычисли результаты:
5+5+5+5 1+1+1+1+1 5+6+3
42 + 42 0 + 0+0 + 0 + 0 4 + 6 + 8
г) На понимание смысла определения действия умножения:
Рассмотри записи и объясни, какое число берется слагаемым и сколько раз берется слагаемым это число: 6-4 = 24 9-3 = ...
6 + 6 + 6 + 6 = 24 9 + 9 + 9 =...
Выражение вида 3 • 5 называют произведением. Числа 3 и 5 в этой записи называют сомножителями (множителями).
Запись вида 3 • 5 = 15 называют равенством. Число 15 называют значением выражения. Поскольку число 15 в данном случае получено в результате умножения, его также часто называют произведением.
Например:
Найдите произведение чисел 4 и 6. (Произведение чисел 4 и 6 — это 24.)
Поскольку названия компонентов действия умножения вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.
Например:
1. Среди данных выражений найдите такие, в которых первый множитель равен 3 (второй множитель равен 2 и т. д.):
2-2 7-3 6-2 1.6 3-5 3-2 7-3 3-4 3-1
2. Составьте произведение, в котором второй множитель равен 5. Найдите его значение.
3. Выберите примеры, в которых произведение равно 6. Подчеркните их красным цветом. Выберите примеры, в которых произведение равно 12. Подчеркните их синим цветом.
7-3 6-1 2-2 2-3 6-2 3-2 2-6
4. Как называют число 4 в выражении 5 • 4? Как называют число 5? Найдите произведение. Составьте пример, в котором произведение равно тому же числу, а множители другие.
5. Множители 8 и 2. Найдите произведение.
В третьем классе дети знакомятся с правилом взаимосвязи компонентов умножения, которое является основой для обучения нахождению неизвестных компонентов умножения при решении уравнений:
Если произведение разделить на один множитель, то получится другой множитель.
Например:
Решите уравнение 6 * х = 24. (В уравнении неизвестен множитель. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель. х= 24:6, х = 4.)
Однако, данное правило в учебнике математики 3 класса не является обобщением представлений ребенка о способах проверки действия умножения. Правило проверки результатов умножения рассматривается в учебнике намного позже — после знакомства с вне-табличным умножением и делением (знакомства с умножением и делением двузначных чисел на однозначные, не входящим в таблицу умножения и деления). Это объясняется тем, что правило взаимосвязи компонентов умножения является основой составления таблицы деления. Поскольку предполагается, что табличные случаи умножения ребенок к этому времени знает наизусть, то нет необходимости в проверке результатов. Есть только необходимость быстро восстанавливать (вспоминать) нужное третье число по двум данным.
Например:
Вычисли
9-2 = ... 5-4 = ... 1*7 = ...
18:2 = ... 20:4 = ... 7:7 = ...
При выполнении устного внетабличного умножения, требующего применения достаточно сложного алгоритма, необходима проверка, поскольку многие дети часто ошибаются в этих случаях.
Правило проверки действия умножения:
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература