3. Сложение и вычитание целых тысяч на основе правил арифметических действий
Учебник математики для 4 класса практически не предлагает вычислений соответствующего вида, однако учителя часто используют их на устном счете.
К этим случаям относятся вычисления вида: 70 200 + 400, 600 100 - 99, 3 008 + 351,425 100 - 24 100 и т. п.
При вычислениях используется знание десятичного состава многозначных чисел и понимание того, что во всех случаях действия затрагивают только часть первого числа (первое число может рассматриваться как сумма). Таким образом действия могут выполняться только с частью первого числа.
Например:
Вычисляя сумму 70 200 + 400, можно отдельно сложить 400 и 200, а затем их сумму прибавить к числу 70 000. Фактически используется правило прибавления числа к сумме.
При выполнении вычислений в случае 425 100 - 24 100 используется правило вычитания числа из суммы. 425 100 рассматривается, как сумма 400 000 и 25 100. Из одного из слагаемых вычитается 24 100 (25 100 - 24 100 = 1 000), и полученный результат складывается с первым слагаемым: 400 000 + 1 000 = 401 000.
В основе всех этих случаев лежит хорошее знание разрядного состава многозначных чисел и умение выполнять устные вычисления целыми разрядами.
Способы письменных вычислений (в столбик)
Письменные приемы сложения и вычитания являются основными вычислительными действиями при вычислениях в объеме многозначных чисел, поскольку вычисления в уме с многозначными числами представляют собой слишком сложную проблему для всех детей. Использование письменных алгоритмов вычислений в этих условиях является психологически и методически оправданным.
Усвоение детьми нумерации четырехзначных и многозначных чисел позволяет им осуществить перенос умения складывать и вычитать числа «столбиком» из области трехзначных чисел на область многозначных чисел.
При знакомстве с письменными приемами сложения и вычитания в объеме многозначных чисел проводится аналогия с алгоритмом письменного сложения и вычитания в пределах 1000:
1) Письменное сложение и вычитание любых многозначных чисел выполняется так же, как сложение и вычитание трехзначных чисел.
2) При записи столбиком, как и при сложении трехзначных чисел следует записывать разряд под соответствующим разрядом, и складывать сначала единицы, потом десятки, а потом сотни, потом тысячи и т. д. (справа налево).
Считается, что дети хорошо научены выполнять действия сложения и вычитания в столбик, поэтому в учебнике 4 класса не предусмотрено распределение случаев сложения и вычитания по уровням сложности.
Первыми рассматриваются различные случаи с переходами через разряд как при сложении так и при вычитании: 3 126 + 4 232; 25 346 - 13 407.
Затем рассматриваются случаи вычитания с нулями в уменьшаемом:
600 - 25; 1 000 - 124; 30 007 - 648.
Эти случаи являются наиболее сложными, поскольку требуют «заема» разрядных единиц не из соседних, а из далеко отстоящих разрядов. Эти случаи полезно сначала сопровождать подробной пояснительной записью на доске, чтобы дети понимали и видели, откуда появляются девятки в «пустых» разрядах.
Например:
30 007 Вычитаю единицы. Из 7 нельзя вычесть 8. 648 Пробую занять единицу в соседнем разряде.
В разряде десятков, сотен и тысяч нет разрядных единиц, поэтому «заем» возможно произвести только из разряда десятков тысяч: 30 тыс. - 1 тыс. = 29 тыс. Подписываем 29 над 30.
«Занятую» тысячу представляем в виде суммы 1 тыс. = 1000 = = 990 + 10.
Подписываем над разрядами сотен и десятков девятки, а из 10 единиц вычитаем 8, получаем 2 единицы. Но в разряде единиц было 7 единиц. Добавляем их к полученным 2 единицам и пишем в разряде единиц 9.
Вычитаем: 9 дес. - 4 дес. = 5 дес. Пишем 5 в разряде десятков. 9 сот. - 6 сот. = 3 сот. Пишем 3 в разряде сотен.
От десятков тысяч осталось 29 тыс. Пишем 9 в разряде тысяч, 2 — в разряде десятков тысяч.
При изучении сложения и вычитания многозначных чисел рекомендуется повторять и закреплять названия компонентов и результатов действий; свойства нахождения неизвестных компонентов действий при проверке результатов вычислений; рассматривать закономерности изменения суммы и разности при изменении одного из компонентов действий.
Многие дети используют калькуляторы как при выполнении вычислений с многозначными числами, так и при проверке результатов. В старших классах не возбраняется использовать калькуляторы при необходимости выполнить громоздкие вычисления (на уроках физики, химии, геометрии).
Чтобы стимулировать ребенка к использованию умения самостоятельно вычислять в столбик, следует предлагать задания, не позволяющие механического использования калькулятора для вычисления результата. Это различные задания на нахождение ошибки в записях или цифрах вычислений, на прикидку округленных результатов вычислений, на восстановление пропущенных цифр в компонентах действий, на выбор верных ответов из предложенных и т. п. Учителю следует помнить, что механический характер вычислительных действий при вычислениях с многозначными числами быстро приводит к утомлению детей, что провоцирует появление ошибок. Поэтому не стоит задавать подряд больше трех примеров на вычисления с многозначными числами.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература