logo

11. Найди и исправь ошибку:

50-6 = 36 30-7= 13

^ ^

40 10 □ □

70-3 = 63 40 - 2 = 38

^ ^

□ □ □ □

Прием 46 + 5 — прибавление единиц к числу с переходом через десяток

Схемы приема: 46+5=51 46+5=51

/ /\ /\ \

50 - 4 1 40 6 - 11

51 51

Для освоения данного приема ребенок должен знать состав однозначных чисел, уметь дополнять любое двузначное число до ближайшего целого, и выполнять разрядное сложение (50 + 1).

Виды заданий, помогающих ребенку освоить данный прием:

1. Какие числа нужно вставить в пустые окошки, чтобы сохранить закономерность?

10 7 3 …. 5 5 10 … 2

  1. Вставь числа в окошки, чтобы равенства были верными:

7 + 5 =□ 5 + □=14 □+7 = 16 □ + 7 = 15

3. Найди ответы к примерам и соедини их стрелкой:

10 + 5 22 17 + 5 19 10 + 9 15

10 + 3 16 10 + 6 22 16 + 6 13

4. Назови и запиши сумму:

Прием 42-5 — вычитание единиц из числа с переходом через десяток

Схемы приема:

4 2-5 = 37

/\

2 3

Для освоения данного приема ребенок должен знать состав однозначных чисел, уметь выделять десяток из любого двузначного числа, уметь вычитать в пределах 10 и выполнять разрядное сложение или сложение без перехода через десяток.

Виды заданий, помогающих ребенку освоить данный прием:

1. Вставь числа в окошки, чтобы равенства были верными:

7 + 5 = 4 + = 13 14 — □ = 6

12 — 5 = □ □ + 6 = 14 17 — □ = 8

□ + 7 = 15 -5 = 8

2.

3. Найди значение выражения:

35 - 5 = 67 - 7 = 98 - 8 =

54-4= 76-6= 43-3 =

4. Найди значение каждого выражения, используя первый ответ каждого столбика:

42-2= 54- 4 = 76-6 =

42-3= 54-5= 76-7 =

42-4= 54-6= 76-8 =

42 - 5 = 54 - 7 = 76 - 9 =

5. Найди ответы, используя схемы:

57-8 =

7 1

63-6 =

3 3

6. Дополни схемы и найди ответы:

43-5= 53-7 =

7. Найди значение выражений удобным тебе способом:

58-7= 78-9 =

65 - 6 = 34 - 6 =

8. Сравни выражения:

37 + 20....37 + 2

61 — 40 ...61-4

58 + 7 ... 55 + 7

83-9... 86-9

Прием 40 + 16; 45 + 23 — сложение двузначных чисел без перехода через десяток

Схема приема: 40 + 16 = 56

Для освоения данного приема ребенок должен знать разрядный состав двузначных чисел, уметь выполнять сложение разрядных единиц (десятки с десятками, единицы с единицами).

На основе этих же знаний и умений ребенок осваивает следующий прием.

Прием 45 - 12 — вычитание двузначных чисел без перехода через десяток

Схема приема: 45 - 12 = 33

Виды заданий, помогающих ребенку освоить данный прием:

1. Найди ответ каждого примера в цепочке примеров и покажи стрелкой:

5 + 2

7-6

1+4

5 + 4

9-6

3 + 5

8-3

2. Вставь числа в окошки, чтобы равенства были верными:

40 + □ = 50 50 + □ = 90 □+40 = 60

70-□ = 60 □-30 = 60 90-□=40

3. Вычисли, используя схемы:

45 + 12 = 45 - 12 =

/\ /\

10 2 10 2

59-16 =

/\

10 6

21+24 =

/\

20 4

4. Найди значение выражений любым удобным тебе способом:

55+ 12= 55- 12= 53 + 35 =

31 + 24= 47-26= 54-33 =

45+ 14= 69- 16 =

Прием 40- 16 — вычитание двузначного числа из целых десятков с заемом десятков

Схема приема:

Прием является технически довольно сложным. Для его выполнения требуется выполнить ступенчатые «расщепления» числа 40, последовательно занимая десятки для вычитания сначала 10, затем 6.

Виды заданий, помогающих ребенку освоить данный прием:

1. Добавь нужные числа на крышах домиков.

16

2. Найди ответы примеров и покажи стрелкой:

б) 40-6 42 70-5 36 50- 8 65

3. Напиши в кружках нужные числа:

4. Найди сумму, используя схему:

40+16 =

/\

10 6

60 + 38 =

/\

30 8

5. Выполни вычитание, используя схему:

40- 16= 70- 35 =

/\ /\

10 6 30 5

50-28= 90-47 =

/\ /\

20 8 40 7

6. Найди значение выражений любым удобным тебе способом:

50 + 26= 60+ 19= 90-37 =

/\

□ □

70 + 14 = 60 - 28 = 30 + 23 =

/\

□ □

7. Выбери знак, который можно поставить в окошко, и значение ответа из двух чисел в скобках:

70 □ 46 = (24, 34) 80 17 = (53, 63)

20 13 = (33, 48) 90 19 = (81, 71)

Прием 37 + 48 — сложение двузначных чисел с переходом через десяток

При выполнении данного приема в уме (устно) каждое число раскладывается на разрядные составляющие, а затем разрядные единицы складываются: десятки с десятками, единицы с единицами. Получившиеся суммы снова складываются.

Для успешного выполнения этого приема ребенок должен хорошо знать разрядный состав двузначных чисел, уметь складывать целые десятки и складывать однозначные числа в пределах 20.

Прием 37 + 53 — сложение двузначных чисел с получением в результате целых десятков

Выполнение этого приема требует тех же знаний и умений, что и предыдущий прием. Способ выполнения тот же. При устном выполнении данный случай не вызывает затруднений, но при письменном выполнении ребенок может терять разрядную единицу, поскольку при письменном выполнении действия начинают выполнять с разряда единиц и вновь полученную разрядную единицу следует добавить дополнительно к сумме десятков.

Прием, облегчающий ребенку выполнение устных вычислений в пределах 100

Значительная часть детей испытывает большие трудности при устных вычислениях в пределах 100. Учить детей сразу приемам письменных вычислений — значит с первых же шагов обрекать их на полную беспомощность при выполнении устных вычислений уже в пределах 100. Научить приемам письменных вычислений иногда проще, чем пытаться развивать собственную вычислительную деятельность ребенка. Однако в практической жизни людям довольно часто приходится выполнять несложные (в пределах 100) вычисления в уме, а также довольно часто требуется умение оценить возможные границы результатов несложных вычислений. Психологами доказано, что формирование и развитие собственной вычислительной деятельности ребенка благотворно действует на развитие внутреннего плана действий, гибкости и рациональности мышления.

Особые трудности с устными вычислениями часто испытывают дети с замедленным типом мышления, дети с ведущим синтетическим способом мыслительной деятельности, а также ведущие кинестетики (дети, которые предпочитают опору на пальцевый счет).

Для детей с преобладанием синтетического типа мыслительной деятельности и для детей с замедленной мыслительной деятельностью были разработаны специальные схематические модели двузначных чисел, отражающие их десятичную структуру. На базе использования этих моделей (как основы для построения адекватной схематической модели приема) для этих детей была разработана иная последовательность знакомства с вычислительными приемами и иные способы их выполнения. Использование этих способов при устных вычислениях лишь в небольшой степени меняет порядок изучения вычислительных приемов приведенный выше.

Традиционно в начальной школе мы уделяем наибольшее внимание разрядной структуре двузначного и многозначных чисел, гораздо меньше внимания уделяется их десятичной структуре, хотя десяток является основанием десятичной системы счисления. Это можно объяснить тем, что познакомить ребенка с разрядным разложением числа мы можем уже в первом классе, используя понятие «разрядные слагаемые», т. е. 39 = 30 + 9, а чтобы познакомить

его с десятичным разложением того же числа пришлось бы использовать запись 39 = 10-3 + 9.

Поскольку знакомство с действием умножения по сегодняшним вариантам программ по математике для начальных классов предполагается лишь во втором классе, такая запись, естественно, в 1 классе не может быть использована.

Соответственно понятию «разрядный состав двузначного числа», мы рассматриваем два случая так называемого разрядного сложения и вычитания, которые в дальнейшем становятся одним из опорных приемов для обучения сложению и вычитанию с переходом через десяток и других вычислительных приемов в пределах 100. В соответствии с разрядным составом строится и схематическая разрядная модель числа, с которой связываются соответствующие случаи сложения и вычитания:

39 30 + 9 39-9

/\

30 9 9 + 30 39-30

Для детей с трудностями вычислительной деятельности предлагается другая схематическая модель двузначного числа, имеющая в основе его десятичный состав. Использование схематической десятичной модели, доступной восприятию первоклассника, позволило обойти невозможность использования аналитической записи, отражающей десятичную структуру числа.

С другой стороны, данная модель позволяет эффективно использовать мыслительные особенности ребенка с преобладанием синтетического типа мышления (а их среди первоклассников большинство), которые предрасположены к работе с наглядными моделями изучаемых понятий. Используемая модель понятия (двузначного числа) позволяет такому ребенку в конкретной деятельности моделировать сам прием вычисления, в то же время являясь основой для самопроверки (т. е. дает возможность убедиться в правильности ответа). Десятичная модель числа выглядит следующим образом (дети назвали ее «солнышко»):

39

10 9

10 10

С этой моделью связаны следующие случаи сложения и вычитания:

39-9 39- 10 39-20 30 + 9

39- 19 39-29 39-30 9 + 30

Как видим, их гораздо больше, чем в случае опоры на разрядную модель. В то же время, все эти случаи не выходят за рамки десятичного состава числа 39, воплощенного в его схематической модели.

Используя эту модель, ребенок не только осваивает вышеозначенные случаи вычисления, представляя себе суть приема на наглядном уровне, но и действуя руками (просто закрывая на модели пальцем или ладонью вычитаемое), сразу же проверяет правильность полученного ответа:

39

10 9

10 10

39 - 19 - 20

Таким образом, формируется прием собственной вычислительной деятельности ребенка.

Поскольку для чисел второго десятка десятичная модель совпадает с разрядной, использование этого приема моделирования при знакомстве с разрядным сложением и вычитанием в пределах 20, наряду с рассматриваемыми там предметными моделями (кубиками, палочками) будет носить ознакомительный характер:

19

/\

10 9

10 + 9 9+10

19-10 19-9

Активное использование этих моделей для осознания десятичной структуры двузначного числа при изучении нумерации двузначных чисел позволит создать прочную базу для усвоения вычислительных приемов в пределах 100.

Приведем варианты вычислений, которые позволяет организовать использование десятичной модели двузначного числа:

27-10-10 27-20 27-10-7 27-17

34-10 34-20 34 - 30 30 + 4

34-4 34-14 34-24 34 + 2

76

10 10

10

10

65

-5

65

-30

65 + 1

65

- 10

65

-35

65-1

65

-20

65

-45

65 + 2

65

-50

65

-55

65-2

65

-40

65

-25

65 + 3

65

-15 -

65-3

65-5 65 + 5

Детям, которым трудно даются арифметические вычисления, такая модель значительно облегчает работу. Используя эту модель, для этих детей можно разработать индивидуальный путь освоения и других случаев вычислений, например:

42 + 3 = 45

10 10 10

На первый взгляд, такая схема приема производит гораздо более громоздкое впечатление, чем его аналитическая запись:

45 + 7 = 45 + (5 + 2) - (45 + 5) + 2 = 50 + 2 = 52

Однако в отношении тех детей, о которых идет речь (синтетики с замедленным типом мышления, необходимо требующие наглядной внешней опоры для формирования осознанного типа деятельности), такая модель оказывается более эффективной в связи со своей наглядностью, а чуть большая затрата труда и времени для построения этой модели (самостоятельного рисования десятичной схемы числа) этих детей не отвращает, наоборот, она служит как бы приемом подготовительно-организующим дальнейшую вычислительную деятельность. Использование таких моделей еще на этапе изучения нумерации в пределах 100 (до начала изучения темы «Сложение и вычитание в пределах 100»), позволяет легко освоить первые девять приемов вычислений.

Использовать ли десятичную схему и дальше или перейти к аналитической записи приема вычисления, учитель решит, ориентируясь на преобладающие индивидуально-типологические характеристики учеников своего класса.