3. Вычисли периметры многоугольников в сантиметрах.
Выполнение:
Длины сторон фигур ребенок измеряет линейкой и вычисляет периметр (сумму длин сторон). У четырехугольника противолежащие стороны равны, поэтому можно, выяснив это с помощью циркуля, вычислять его периметр рациональным способом: найти сумму двух рядом лежащих сторон, а затем умножить это число на 2. У пятиугольника все стороны равной длины. Выяснив это с помощью циркуля, можно измерить одну сторону, а затем умножить ее длину на 5.
4. Чему равна сторона квадрата, если его периметр равен периметру прямоугольника со сторонами 5 см и 3 см?
Выполнение:
Вычисляется периметр прямоугольника: (5 см + 3 см) • 2 = 16 см. Этот периметр равен периметру квадрата. Поскольку у квадрата все стороны равны, значит, сторона квадрата равна: 16 см: 4 см = 4 см.
5. Начерти два отрезка так, чтобы длина одного была 4 см, а длина другого — в 2 раза больше. Обозначь отрезки буквами и узнай, на сколько сантиметров один из них меньше другого.
Выполнение:
Вычерчивается отрезок длиной 4 см. Длина другого 4 см • 2 = 8 см. Разницу длин находят вычислением 8 см - 4 см = 4 см.
6. Вычисли площадь прямоугольника, длины сторон которого 9 см и 2 см.
Выполнение:
Площадь прямоугольника находится как произведение длин сторон. Значит 9 см • 2 см = 18 см2.
7. Найди длину стороны квадрата ABCD, периметр которого 8 см. Начерти его и вычисли площадь.
Выполнение:
Периметр квадрата — это сумма длин всех его сторон, значит одна сторона квадрата 8 см : 4 = 2 см (поскольку стороны квадрата имеют равные длины). Площадь квадрата — это произведение длин его сторон: 2 см • 2 см = 4 см2.
8. Измерь радиус данной окружности и начерти окружность такого же радиуса.
Выполнение:
Проводим радиус окружности, соединяя центр с любой точкой окружности. Измеряем ее циркулем и вычерчиваем окружность такого же радиуса.
9. Начерти три отрезка: длина первого отрезка 8 см, длина второго составляет одну четвертую длины первого, а длина третьего на 6 см больше длины второго.
Выполнение:
Первый отрезок вычерчивается по заданной длине. Длина второго сначала вычисляется: 8 см : 4 = 2 см. Длина третьего отрезка также сначала вычисляется: 2 см + 6 см = 8 см.
10. Начерти квадрат, площадь которого равна площади прямоугольника со сторонами 2 см и 8 см. Найди периметр этого квадрата.
Выполнение:
1. Вычислим площадь прямоугольника: 2 см • 8 см = 16 см2.
2. Эта площадь равна площади квадрата. Площадь квадрата равна произведению длин его сторон, значит, нужно подобрать число, произведение которого на само себя равно 16 — это число 4. Длина стороны квадрата 4 см. Периметр квадрата 4 см • 4 = 16 см.
11. Периметр равностороннего треугольника 24 см. Чему равна длина каждой его стороны?
Выполнение:
Равносторонний треугольник имеет стороны равной длины, значит 24 см : 3 = 8 см — длина стороны треугольника.
12. Из трех одинаковых квадратов составили прямоугольник. Узнай периметр этого прямоугольника, если сторона каждого квадрата равна 16 мм.
Узнай сторону квадрата, периметр которого равен периметру этого прямоугольника.
Выполнение:
Для решения этой задачи удобно выполнить рабочий рисунок (примерный):
Анализ рисунка показывает, что для нахождения периметра прямоугольника нужно 16 мм • 8 = 128 мм.
Если считать это число периметром квадрата, можно определить длину его стороны: 128 мм : 4 = 32 мм.
4 класс
1. Начерти луч с началом в точке К. Отложи на нем от его начала один за другим несколько отрезков длиной по 15 мм. Отметь на луче точки А, В, С, соответствующие числам 4, 6, 8. Найди длины отрезков КА, KB, АС, ВС.
Выполнение:
Выполнять задание следует по чертежу:
По рисунку определяем длины отрезков:
КА — 4 единицы по 15 мм, КА = 15 мм • 4 = 60 мм.
KB — 6 единиц по 15 мм, KB = 15 мм • 6 = 90 мм.
АС — 4 единицы по 15 мм, АС = 15 мм • 4 = 60 мм.
ВС — 2 единицы по 15 мм, ВС = 15 мм • 2 = 30 мм.
2. Рассмотри чертеж и объясни, как найти площадь треугольника ACD.
Выполнение:
Треугольник ACD состоит из двух треугольников: ADK и АСК
Треугольник ADK составляет половину квадрата DMAK, значит, его площадь равна половине этого квадрата.
Треугольник АСК составляет половину прямоугольника АВСК, значит, его площадь равна половине площади этого прямоугольника.
Можно заметить, что квадрат DMAK и прямоугольник АВСК составляют вместе прямоугольник DMBC, значит, площадь искомого треугольника Л CD составляет половину площади прямоугольника DMBC
Измеряем длины сторон прямоугольника DMBC, находим его площадь как произведение длин сторон, и делим полученное число пополам.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература