2. Внетабличное умножение и деление в пределах 100
К внетабличным случаям умножения и деления в пределах 100 относят случаи умножения двузначного числа на однозначное (20-3, 18-3),а также случаи деления двузначного числа на однозначное, не входящие в число табличных (80 : 4, 96 : 6) и случаи деления двузначного числа на двузначное в пределах 100 (80 : 40, 96 : 16). Эти случаи рассматриваются как случаи устных вычислений, и предполагается, что ребенок выполняет их без обращения к письменным алгоритмам вычислений, а лишь используя известные ему правила и законы арифметических действий и знание табличного умножения и деления.
Используемые математические законы и правила
Для подготовки к изучению внетабличного умножения и деления необходимо рассмотреть следующие правила арифметических действий:
1) правило умножения суммы на число и правило умножения числа на сумму;
2) правило деления суммы на число;
3) правило группировки множителей (сочетательное свойство умножения).
Рассмотрим каждое из этих правил и обоснуем их использование при устных внетабличных вычислениях.
Правило умножения суммы на число и правило умножения числа на сумму
Эти два правила являются двумя вариантами раскрытия смысла распределительного свойства умножения относительно сложения. В буквенном виде эти варианты могут быть записаны следующим образом:
(a+b) •c=a•c+b•c с•(a+b)=с•a+с•b
Реально знакомство детей с этими двумя вариантами одного и того же правила разведено во времени почти на целый год: первое правило лежит в основе обучения детей умножению двузначных чисел на однозначные в теме «Внетабличное умножение и деление» в 3 классе, а второе правило лежит в основе способа действия при умножении двузначного числа на двузначное при умножении в столбик в 4 классе.
В основе разъяснения правила умножения суммы на число лежит опора на знание конкретного смысла действия умножения.
Рассматривая два способа вычисления результатов с опорой на анализ рисунка, дети убеждаются в том, что результат при обоих способах вычислений одинаков.
Следует отметить, что первый способ вычислений не требует специальных объяснений и введения нового правила, поскольку он подчиняется общим требованиям к порядку выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.
Особо следует оговорить второй способ, поскольку при таких вычислениях фактически нарушается установка на выполнение действия в скобках первым. Именно поэтому при знакомстве детей с этим правилом в 3 классе снова возвращаются к предметным картинкам, позволяющим получить результаты действий пересчетом. В данном случае пересчет фигурок является тем единственным аргументом, который учитель может привести в подкрепление правомочности такого нарушения устоявшегося правила (действие в скобках выполняется первым).
Введение правила таким образом является нестрогим, эмпирическим (т. е. опирающимся на непосредственный практический опыт). Более общие способы доказательства этого закона требуют привлечения сложного математического аппарата и нецелесообразны в начальной школе. Безусловно, такое введение правила не формирует у детей обобщенных представлений о способах раскрытия скобок при вычислениях, однако в начальной школе это и не предполагается. Более того, терминология, содержащая слова «раскрываем скобки», не употребляется в начальной школе вообще. Хотя дети и знакомятся с правилом умножения суммы на число, но применять они его могут только на ограниченном количестве случаев, связанных с внетабличным умножением двузначных чисел на однозначное. Применение того же правила в других обстоятельствах (например, при решении уравнений) не предусмотрено. Так при решении уравнения вида (х + 2 ) • 3 = 15 дети не будут применять правило умножения суммы на число (это не предусмотрено ни учебником, ни программой, ни методикой) не только в начальной школе, но и в 5—6 классе, а будут использовать правила взаимосвязи компонентов действий умножения и сложения.
Способ решения: х + 2 = 15 : 3 х+2 = 5х = 5 — 2 х = 3.
Правило умножения суммы на число:
Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные результаты сложить.
Используя аналогичный предметный рисунок, рассматривают правило умножения числа на сумму:
4-(3 + 2) = 4- 5 = 20 4-(3 + 2) = 4-3 + 4- 2 = 12 + 8 = 20
Анализ предметного рисунка и подсчет фигурок на нем помогает ребенку убедиться в том, что результаты вычислений совпадают, несмотря на разные способы вычислений. Этот способ знакомства с правилом используется в 4 классе также как и в 3 классе использовался предыдущий вариант. Точно также, речь идет не о формировании у ребенка обобщенных представлений о способах действий в выражениях со скобками, а только об использовании данного способа вычислений при письменных вычислениях в столбик.
Правило умножения числа на сумму:
Чтобы умножить число на сумму можно умножить это число на каждое слагаемое и полученные произведения сложить.
Правило деления суммы на число
Это правило является вариантом раскрытия смысла распределительного свойства деления относительно сложения. В буквенном виде это правило может быть записано следующим образом:
(a + b) : с = a : с + b : с
В основе разъяснения правила деления суммы на число лежит опора на знание конкретного смысла действия деления. Например:
(8 + 6): 2 = 14:2 = 7 (8 + 6): 2 = 8: 2+ 6: 2 = 4+ 3 = 7
Рассматривая два способа вычисления результатов с опорой на анализ рисунка, дети убеждаются в том, что результат при обоих способах вычислений одинаков.
Следует отметить, что первый способ вычислений не требует специальных объяснений и введения нового правила, поскольку он подчиняется общим требованиям к порядку выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.
Особо следует оговорить второй способ, поскольку при таких вычислениях фактически нарушается установка на выполнение действия в скобках первым. Именно поэтому при знакомстве детей с этим правилом в 3 классе снова возвращаются к предметным картинкам, позволяющим получить результаты действий пересчетом. В данном случае пересчет фигурок является тем единственным аргументом, который учитель может привести в подкрепление правомочности такого нарушения устоявшегося правила (действие в скобках выполняется первым).
Такое введение правила является нестрогим, эмпирическим. Более общие способы доказательства этого закона требуют привлечения сложного математического аппарата и нецелесообразны в начальной школе. Такое введение правила не формирует у детей обобщенных представлений о способах раскрытия скобок при вычислениях, что в начальной школе и не предполагается. Хотя дети и знакомятся с правилом деления суммы на число, но применять они его могут только на ограниченном количестве случаев, связанных с внетабличным делением двузначных чисел на однозначные. Применение того же правила в других обстоятельствах (например, при решении уравнений) не предусмотрено. Так при решении уравнения вида (х + 6) : 3 = 5 дети не будут применять правило деления суммы на число (это не предусмотрено ни учебником, ни программой, ни методикой) не только в начальной школе, но и в 5—6 классе, а будут использовать правила взаимосвязи компонентов действий умножения и сложения.
Способ решения: х + 6 = 5 • 3 д: + 6=15 х=15-6 х = 9
Правило деления суммы на число:
Чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и полученные результаты сложить.
Правило группировки множителей (сочетательное свойство умножения)
Правило группировки множителей (сочетательное свойство умножения) представлено в учебнике как правило умножения числа на произведение. Это правило позволяет научить детей новым способам действия при выполнении устных внетабличных вычислений. В буквенном виде правило может быть представлено следующим образом:
(а • b) • с = а • (b • с) ~ (а • с) • b
В основе его разъяснения лежит конкретный смысл действия умножения и правило перестановки множителей.
Рассматривая три способа вычисления результатов с опорой на анализ рисунка, дети убеждаются в том, что результат при всех способах вычислений одинаковый. Формулируется правило:
Умножить число на произведение можно разными способами:
1) Вычислить произведение и умножить на него число: 6-(3-4) =612 = 72
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература