100(Остаток)
При ознакомлении с делением на двузначное число сначала рассматривают случаи, когда в частном получается одна цифра.
Например:
492 82
-492 6
0
Эту цифру частного находят приемом подбора с последующей проверкой.
При этом можно использовать два приема, облегчающих ребенку подбор цифры частного:
1) Прием ориентировки на таблицу умножения однозначных чисел.
В этом случае ориентируются на последнюю цифру делителя, подбирая такую цифру частного, чтобы при умножении на нее получался результат, совпадающий с последней цифрой делимого.
Например, при делении 492 : 82 это может быть только 6, так как2-6 = 12.
Проверка этой цифры частного при умножении 82 • 6 дает делимое 492.
Приведем еще один пример: 384:96
В таблице умножения числа 6 только множитель 4 дает в результате умножения число, оканчивающееся на 4: 6 • 4 = 24. Проверка цифры 4 в качестве пробной цифры частного дает делимое: 96 • 4 = 384. Следовательно 384 : 96 = 4.
Этот прием помогает быстро найти цифры частного, если речь идет о делении без остатка.
2) Прием замены делителя ближайшим разрядным числом.
В этом случае делитель заменяется на ближайшее разрядное число (в данном случае вместо 96 можно брать 90). В отношении разрядного числа легче найти пробную цифру частного. В данном случае деление 38 дес. на 9 дес. дает пробную цифру частного — 4. Затем ее проверяют, умножая на нее делитель. Цифра может подойти, а может и не подойти, поскольку ближайшее разрядное число берут не по правилу округления, а по принципу отбрасывания единиц. В этом случае проводится коррекция и уточненная цифра частного записывается в ответ.
Процесс деления многозначных чисел на двузначное и трехзначное технически очень сложный и трудоемкий. В старших классах на уроках физики и химии, где бывают нужны многозначные вычисления детям рекомендуют пользоваться калькуляторами.
Эти же приемы облегчения поиска пробной цифры частного можно использовать при делении на трехзначное число.
Например:
738:246
Заменим число 246 ближайшим разрядным числом — это 200.
200 это 2 сот. Разделим 7 сот. на 2 сот. В частном можно пробовать
цифру 3. Проверим эту пробную цифру: умножим 246 на 3, получим
738. Значит 738 : 246 = 3
Например:
1456 364
*
В частном будет одна цифра, поскольку 145 дес. нельзя разделять на 364 так, чтобы в частном получились десятки. В таблице умножения числа 4 только множители 4 и 9 дают в результате числа, оканчивающиеся числом 6. 3 сот., умноженные на 9, дадут 27 сот. — это число больше делимого. Проверим пробную цифру частного 4: 364 -4= 1 456. Значит 1 456 : 364 - 4.
Прием замены делителя на ближайшее разрядное число часто приводит к тому, что первая подобранная таким путем цифра частного не подходит и ее нужно изменять. Это происходит потому, что замена происходит не по правилам округления, а простым отбрасыванием единиц делителя.
Например:
282 47
*
Заменим 47 на ближайшее разрядное число — это 40, т. е. 40 — это 4 дес. Разделим 28 дес. на 4 дес, получим 7 — это пробная цифра частного.
Проверяем, подходит ли цифра 7:47-7 = 329 — это больше, чем 282, значит, в частном должно быть меньше, чем 7.
Проверяем, подходит ли цифра 6: 47 • 6 = 282. Значит, 282:47 = 6.
Использование первого из обозначенных приемов в сочетании с приемом замены делителя на ближайшее разрядное число позволит уменьшить затраты сил и времени на поиски пробных цифр частного.
Использование общего приема округления делителя также позволит быстрее и точнее искать пробную цифру частного. В частности, в данном случае по правилам округления следовало округлять 47 до 50, а значит первая пробная цифра частного — это 6 : 50 • 6 = 300 > 282, но округление произведено с увеличением, а результат близок к делимому, значит можно пробовать 6 в качестве цифры частного.
Наиболее трудоемки случаи, требующие нескольких прикидок по цифрам частного. Особо рассматривается случай, когда при первой пробе получается число 10.
Например:
1016127
*
В частном одна цифра. Прием округления, как и прием замены делителя на ближайшее разрядное число, дает в качестве делителя число 100. Первая пробная цифра частного в этом случае получается 10. Но число 10 содержит две цифры, поэтому оно не подходит.
Пробуем в качестве цифры частного 9. Проверяем: 127 -9 = 1143 > > 1016, значит, цифра 9 не подходит.
Пробуем 8:127 • 8 - 1016. Значит 1016 : 127 - 8. При делении на двух- и трехзначное число в случаях, когда в частном получается не одна цифра, проще ориентироваться при подборе пробной цифры частного на первые цифры делимого и делителя. Например: ^
-8184341
682 24
1364
-1364
0
Первое неполное делимое — 818 десятков, значит, в частном будет две цифры — десятки и единицы.
Первая цифра делимого 8, первая цифра делителя 3, делим 8:3, можно взять по 2. Проверяем первую пробную цифру частного 341 • 2 = 682. Находим остаток 818 - 682 = 136 < 341, значит, цифра 2 подходит.
Второе неполное делимое 1364, первая цифра 1, но она на 3 не разделится. Значит, делим 13 на 3. Можно взять по 4. Проверяем вторую пробную цифру частного 341 • 4 - 1364. Значит, 4 подходит. Деление закончено.
Ответ 24.
Пробная цифра частного проверяется устно, и в этом основная трудность деления на двузначное и трехзначное число. Если ребенок не владеет приемами, облегчающими поиск и первичную проверку пробных цифр частного, то он каждый раз умножает на пробную цифру частного весь делитель, что является сложным и трудоемким процессом, который невозможно выполнить без применения письменных алгоритмов умножения.
Письменные алгоритмы умножения и деления на двузначное и трехзначное число дети изучают в конце 4 класса, поэтому учитель не всегда успевает уделить им достаточно много времени. Большие затраты времени при непродуктивном поиске пробных цифр частного приводят к тому, что на одном уроке дети успевают решить 2—3 примера. Большее количество примеров может быстро привести к утомлению детей и соответственно большому количеству ошибок при вычислениях. Использование продуктивных вычислительных приемов при выполнении письменных вычислений поможет ребенку в овладении осознанной вычислительной деятельностью.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература