logo

100(Остаток)

При ознакомлении с делением на двузначное число сначала рассматривают случаи, когда в частном получается одна цифра.

Например:

492 82

-492 6

0

Эту цифру частного находят приемом подбора с последующей проверкой.

При этом можно использовать два приема, облегчающих ребенку подбор цифры частного:

1) Прием ориентировки на таблицу умножения однозначных чисел.

В этом случае ориентируются на последнюю цифру делителя, подбирая такую цифру частного, чтобы при умножении на нее получался результат, совпадающий с последней цифрой делимого.

Например, при делении 492 : 82 это может быть только 6, так как2-6 = 12.

Проверка этой цифры частного при умножении 82 • 6 дает делимое 492.

Приведем еще один пример: 384:96

В таблице умножения числа 6 только множитель 4 дает в результате умножения число, оканчивающееся на 4: 6 • 4 = 24. Проверка цифры 4 в качестве пробной цифры частного дает делимое: 96 • 4 = 384. Следовательно 384 : 96 = 4.

Этот прием помогает быстро найти цифры частного, если речь идет о делении без остатка.

2) Прием замены делителя ближайшим разрядным числом.

В этом случае делитель заменяется на ближайшее разрядное число (в данном случае вместо 96 можно брать 90). В отношении разрядного числа легче найти пробную цифру частного. В данном случае деление 38 дес. на 9 дес. дает пробную цифру частного — 4. Затем ее проверяют, умножая на нее делитель. Цифра может подойти, а может и не подойти, поскольку ближайшее разрядное число берут не по правилу округления, а по принципу отбрасывания единиц. В этом случае проводится коррекция и уточненная цифра частного записывается в ответ.

Процесс деления многозначных чисел на двузначное и трехзначное технически очень сложный и трудоемкий. В старших классах на уроках физики и химии, где бывают нужны многозначные вычисления детям рекомендуют пользоваться калькуляторами.

Эти же приемы облегчения поиска пробной цифры частного можно использовать при делении на трехзначное число.

Например:

738:246

Заменим число 246 ближайшим разрядным числом — это 200.

200 это 2 сот. Разделим 7 сот. на 2 сот. В частном можно пробовать

цифру 3. Проверим эту пробную цифру: умножим 246 на 3, получим

738. Значит 738 : 246 = 3

Например:

1456 364

*

В частном будет одна цифра, поскольку 145 дес. нельзя разделять на 364 так, чтобы в частном получились десятки. В таблице умножения числа 4 только множители 4 и 9 дают в результате числа, оканчивающиеся числом 6. 3 сот., умноженные на 9, дадут 27 сот. — это число больше делимого. Проверим пробную цифру частного 4: 364 -4= 1 456. Значит 1 456 : 364 - 4.

Прием замены делителя на ближайшее разрядное число часто приводит к тому, что первая подобранная таким путем цифра частного не подходит и ее нужно изменять. Это происходит потому, что замена происходит не по правилам округления, а простым отбрасыванием единиц делителя.

Например:

282 47

*

Заменим 47 на ближайшее разрядное число — это 40, т. е. 40 — это 4 дес. Разделим 28 дес. на 4 дес, получим 7 — это пробная цифра частного.

Проверяем, подходит ли цифра 7:47-7 = 329 — это больше, чем 282, значит, в частном должно быть меньше, чем 7.

Проверяем, подходит ли цифра 6: 47 • 6 = 282. Значит, 282:47 = 6.

Использование первого из обозначенных приемов в сочетании с приемом замены делителя на ближайшее разрядное число позволит уменьшить затраты сил и времени на поиски пробных цифр частного.

Использование общего приема округления делителя также позволит быстрее и точнее искать пробную цифру частного. В частности, в данном случае по правилам округления следовало округлять 47 до 50, а значит первая пробная цифра частного — это 6 : 50 • 6 = 300 > 282, но округление произведено с увеличением, а результат близок к делимому, значит можно пробовать 6 в качестве цифры частного.

Наиболее трудоемки случаи, требующие нескольких прикидок по цифрам частного. Особо рассматривается случай, когда при первой пробе получается число 10.

Например:

1016127

*

В частном одна цифра. Прием округления, как и прием замены делителя на ближайшее разрядное число, дает в качестве делителя число 100. Первая пробная цифра частного в этом случае получается 10. Но число 10 содержит две цифры, поэтому оно не подходит.

Пробуем в качестве цифры частного 9. Проверяем: 127 -9 = 1143 > > 1016, значит, цифра 9 не подходит.

Пробуем 8:127 • 8 - 1016. Значит 1016 : 127 - 8. При делении на двух- и трехзначное число в случаях, когда в частном получается не одна цифра, проще ориентироваться при подборе пробной цифры частного на первые цифры делимого и делителя. Например: ^

-8184341

682 24

1364

-1364

0

Первое неполное делимое — 818 десятков, значит, в частном будет две цифры — десятки и единицы.

Первая цифра делимого 8, первая цифра делителя 3, делим 8:3, можно взять по 2. Проверяем первую пробную цифру частного 341 • 2 = 682. Находим остаток 818 - 682 = 136 < 341, значит, цифра 2 подходит.

Второе неполное делимое 1364, первая цифра 1, но она на 3 не разделится. Значит, делим 13 на 3. Можно взять по 4. Проверяем вторую пробную цифру частного 341 • 4 - 1364. Значит, 4 подходит. Деление закончено.

Ответ 24.

Пробная цифра частного проверяется устно, и в этом основная трудность деления на двузначное и трехзначное число. Если ребенок не владеет приемами, облегчающими поиск и первичную проверку пробных цифр частного, то он каждый раз умножает на пробную цифру частного весь делитель, что является сложным и трудоемким процессом, который невозможно выполнить без применения письменных алгоритмов умножения.

Письменные алгоритмы умножения и деления на двузначное и трехзначное число дети изучают в конце 4 класса, поэтому учитель не всегда успевает уделить им достаточно много времени. Большие затраты времени при непродуктивном поиске пробных цифр частного приводят к тому, что на одном уроке дети успевают решить 2—3 примера. Большее количество примеров может быстро привести к утомлению детей и соответственно большому количеству ошибок при вычислениях. Использование продуктивных вычислительных приемов при выполнении письменных вычислений поможет ребенку в овладении осознанной вычислительной деятельностью.