6. Влияние графического моделирования на формирование умения решать задачи разными способами
Среди различных видов работы над уже решенной задачей (работа над задачей после ее решения) особое место занимает решение задачи другим способом. Хотя в начальной школе выбор различных способов решения задачи в большинстве случаев связан с использованием свойств арифметических действий (сложения, вычитания, умножения, деления), следует стремиться к тому, чтобы учащиеся сознательно выбирали наиболее рациональный из известных им способов.
Решение задач различными способами способствует развитию логического мышления и математических способностей учащихся.
Ранее уже говорилось, что эффективным способом отыскания различных способов решения задачи является ее графическое моделирование. Происходит это потому, что строя графические модели задачи, мы освобождаем учащихся от восприятия несущественных особенностей условий, представляем существенные особенности в наглядной форме и тем самым помогаем детям установить все возможные связи и зависимости между величинами, что, в свою очередь, облегчает детям нахождение различных способов решения.
Приведем несколько примеров работы над такими задачами и покажем, как при этом графические иллюстрации облегчают нахождение путей их решения различными способами. Иными словами, графическая модель задачи сама по себе является средством подведения ребенка к пониманию того, что задача может быть решена разными способами.
Мама купила 2 батона, по 8 рублей каждый. В кассу она подала 20 рублей/Сколько сдачи должна получить мама?
Схема к данной задаче подводит учащихся к одному способу решения:
По этой схеме дети составляют выражение: (20 - 8) - 8. Второй способ решения на этой схеме не просматривается. Если же использовать графическую модель в отрезках, то на ней явно видны оба способа решения:
1.20-(8+ 8)
2. 20 - 8 - 8
На примере таких задач удобно показывать детям необходимость постепенного перехода к более высоким ступеням графической абстракции при решении задач: чем абстрактнее модель, тем больше «степеней свободы» она имеет.
Девочка нашла 36 грибов, а мальчик 28. Среди этих грибов оказалось 3 несъедобных. Сколько съедобных грибов нашли дети?
Графическая модель данной задачи дает возможность по одному рисунку составить все три возможные решения задачи:
1) (36 + 28) - 3
2) (36 - 3) + 28
3) (28-3)+ 36
Схематические изображения для каждого способа решения надо делать разные. В данной задаче их полезно сделать по готовым решениям и объяснить ход мысли при составлении каждой схемы.
Например:
Рассуждение:
Сначала дети высыпали все грибы вместе на полянку, а затем отобрали три несъедобных и выбросили. Значит сначала найдем, сколько грибов было всего, а затем отнимем несъедобные — их было 3.
В магазин привезли 12 ящиков с яблоками по 8 кг в каждом. До обеденного перерыва было продано 9 ящиков. Сколько килограммов яблок осталось продать после обеденного перерыва?
Анализируя текст, строим графическую модель.
— Обозначим отрезком все ящики с яблоками, которые привезли в магазин.
— Сколько килограммов яблок было в каждом ящике? (8 кг.) Обозначим это на чертеже.
— Сколько ящиков продано? (9.) Обозначим на чертеже эти 9 ящиков. Покажите на чертеже те ящики, что остались.
— Что надо узнать в задаче? (Сколько кг яблок осталось.) Обозначим на рисунке искомое знаком вопроса.
По чертежу легко увидеть различные способы решения:
1 способ: 8-12-8-9 = 24 (кг)
2 способ: 8 • (12 - 9) = 24 (кг)
Роль графической модели при нахождении разных способов решения задач «на движение» была показана выше.
В заключение приведем несколько нестандартных задач, на примере которых можно со всей убедительностью показать высокую практическую эффективность графической модели как опоры для осознанных мыслительных действий при решении задачи.
Девочка сыграла на чемпионате школы 22 партии в шахматы. 2 партии она проиграла, а из остальных на каждые 2 партии вничью, у нее 3 выигранных. Сколько побед у девочки?
Обозначим на модели нулем — ничью, плюсом — выигрыш. Если начертить отрезок длиной 22 клетки, то задачу можно решить графическим способом, подсчитав по рисунку количество выигрышей.
Опора на графическую модель приводит к следующим выводам:
а) выигрышей 3 • 4 = 12;
б) проигрышей 2• 4 = 8.
Внук спросил дедушку: «Сколько тебе лет?» Дедушка ответил: Если проживу еще половину того, что я прожил, да еще один год, то мне будет сто лет. Сколько лет дедушке?
Анализируя графическую модель, получаем решение:
1) 100 - 1 = 99 (лет)
2) 99 : 3 = 33 (года)
3) 33- 2 = 66 (лет)
Мама купила 4 кг яблок. Расплачиваясь за них, она получила 40 рублей сдачи. Если бы мама купила 6 кг яблок, то ей пришлось бы доплатить 40 рублей. Сколько стоил 1 кг яблок?
Анализ графической модели приводит к выводу, что цена 1 кг яблок 40 рублей.
Сумма трех чисел равна 18. Первое число в 2 раза больше второго, а второе в 3 раза меньше третьего. Найдите эти числа.
Анализируя графическую модель, получаем: I число — 6; II число — 3; III число —9.
Обучение младших школьников решению задач — процесс длительный, методически неоднозначный и сложный даже для учителей с большим стажем работы. Опыт работы автора данного пособия в системе повышения квалификации учителей подтверждает это. С целью более детального анализа всех видов встречающихся в курсе математики начальных классов задач и подробного анализа методики работы с ними, автором данного пособия была написана книга для учителя «Обучение решению задач в начальных классах» (М., 2003). При подготовке к практическим занятиям, а также при подготовке к выходу на учебную практику в школу студентам рекомендуется обратиться к этой книге. В ней рассмотрены методика работы над всеми типовыми и производными от типовых задач, встречающимися в различных учебниках для начальных классов, а также вопросы обучения решению задач повышенной сложности при проведении факультатива или кружка по математике.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература