2. Математическое выражение и его значение
Последовательность букв и чисел, соединенных знаками действий, называют математическим выражением.
Следует отличать математическое выражение от равенства и неравенства, которые используют в записи знаки равенства и неравенства.
Например:
3 + 2 — математическое выражение;
7 - 5; 5 • 6 - 20; 64 : 8 + 2 — математические выражения; а + b; 1 - с; 23 - а •4 — математические выражения.
Запись вида 3 + 4 = 7 не является математическим выражением, это равенство.
Запись вида 5 < 6 или 3 + а > 7 - не являются математическими выражениями, это неравенства.
Числовые выражения
Математические выражения, содержащие только числа и знаки действий называют числовыми выражениями.
8 1 классе рассматриваемый учебник не использует данные понятия. С числовым выражением в явном виде (с названием) дети знакомятся во 2 классе.
Простейшие числовые выражения содержат только знаки сложения и вычитания, например: 30 - 5 + 7; 45 + 3; 8 - 2 - 1 и т. п. Выполнив указанные действия, получим значение выражения. Например: 30 - 5 + 7 = 32, где 32 — значение выражения.
Некоторые выражения, с которыми дети знакомятся в курсе математики начальных классов, имеют собственные названия: 4 + 5 — сумма; 6-5— разность; 7 • 6 — произведение; 63 : 7 — частное.
Эти выражения имеют названия для каждого компонента: компоненты суммы — слагаемые; компоненты разности — уменьшаемое и вычитаемое; компоненты произведения — множители; компоненты деления — делимое и делитель. Названия значений этих выражений совпадают с названием выражения, например: значение суммы называют «сумма»; значение частного называют «частное» и т. п.
Следующий вид числовых выражений — выражения, содержащие действия первой ступени (сложение и вычитание) и скобки. С ними дети знакомятся в 1 классе. С этим видом выражений связано правило порядка выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.
Далее следуют числовые выражения, содержащие действия двух ступеней без скобок (сложение, вычитание, умножение и деление). С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих; все арифметические действия без скобок: действия умножения и деления выполняются раньше, чем сложение и вычитание.
Последний вид числовых выражений — выражения, содержащие действия двух ступеней со скобками. С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия и скобки: действия в скобках выполняются первыми, затем выполняются действия умножения и деления, затем действия сложения и вычитания.
Тождественные преобразования числовых выражений
Тождественные преобразования выражений — это замена данного выражения другим, значение которого равно значению данного выражения. Иными словами, тождественные преобразования не меняют значение выражения. В начальной школе все преобразования, выполняемые над выражениями, тождественные. Преобразования, которые могут нарушать тождественность, дети встречают только в математике старших классов — это возведение правой и левой части выражения в квадрат, потенциирование, логарифмирование и т. п.
В начальных классах тождественные преобразования опираются на свойства арифметических действий (прибавление суммы к числу, вычитания суммы из числа и т. п.). С учетом этих свойств можно изменять порядок действий в выражениях по отношению к общему правилу и при этом значение выражения не изменяется. Например:
(54 + 30) - 14 - (54 - 14) + 30 = 40 + 30 - 70. Тождественные преобразования могут выполняться на основе конкретного смысла действий. Например:
Сравни выражения:
35-6 + 35*35.7.
35> 6 + 35 = 35 • 7, значит, эти выражения имеют равные значения.
Буквенные выражения
Буквенные выражения наряду с числами содержат переменные, обозначенные буквами.
Выражения могут содержать одну букву. Например:
Найди значение выражения а + 3 при а= 7, а = 12, а= 65.
Каждое значение переменной а дает другое значение суммы. Анализ получаемых значений суммы подводит ребенка к выводу: чем больше значение одного из слагаемых при постоянном значении другого, тем больше значение суммы.
Например:
Найди значения выражений: 24 : с и с • 7, если с= 1, с= 3, с= 6, с= 8.
Анализ получаемых частных (24,8,4,3) подводит ребенка к выводу: увеличение значения делителя при постоянном делимом уменьшает значение частного.
Анализ получаемых произведений (7, 21, 42, 56) подводит ребенка к выводу: увеличение одного множителя при неизменном другом множителе, увеличивает значение произведения.
Выражения могут содержать две (и более) буквы.
Например:
Вычисли значения выражений a + b и b — а, если a = 23, b= 100; а =100, b= 450.
Для вычисления значений выражений заданные значения переменных поочередно подставляются в выражения. Задание имеет целью подвести ребенка к пониманию возможности переменных значений компонентов действий.
Буквы могут принимать любые значения, но следует обращать внимание на область допустимых значений неизвестных, заданную неявно тем, что все вычисления дети в начальных классах выполняют на области натуральных чисел. Так, в выражении b - a, переменная b может принимать любые значения, а переменная а может принимать значения только меньшие или равные b.
Для выражений, содержащих действия умножения и сложения, ограничений для значений неизвестных нет. А для выражений, содержащих действие деления, обычно предлагаются значения делимого и делителя, дающие значение частного без остатка.
Анализ приведенных примеров показывает, что буквенная символика используется в качестве средства обобщения знаний и представлений детей о количественных характеристиках объектов окружающего мира и о свойствах арифметических действий.
Использование буквенной символики представляет собой абстрагирование от конкретных количественных характеристик, которые ребенок достаточно легко может представить себе мысленно.
Например:
В клетке 2 зайчика белых и 3 зайчика серых. Сколько зайчиков всего?
Конкретное количество зайчиков можно представить на модели (палочки, кружки) и получить конкретный ответ в результате выполнения действия: 5 зайчиков всего.
Та же ситуация в буквенном виде:
В клетке а зайчиков белых и зайчиков серых. Сколько зайчиков всего?
В этом случае ответ записывается буквенным выражением a+6, смысл которого не должен соотноситься с конкретным числом. Выражение является описанием смысла ситуации (объединение двух множеств в одно посредством действия сложения), и в этом его главная роль.
Такая обобщающая роль буквенной символики делает ее очень сильным аппаратом формирования обобщенных представлений и способов действий с математическим содержанием. Именно в связи с этим раннее и активное приобщение к алгебраическим понятиям является важной составляющей курсов математики для начальных классов в системах Л.В. Занкова и В.В. Давыдова, поскольку одной из ведущих идей этих курсов является идея формирования и развития теоретического стиля мышления у ребенка.
Равенство и неравенство
Два числовых математических выражения, соединенные знаком «=» называют равенством.
Например: 3 + 7 = 10 — равенство.
Равенство может быть верным и неверным.
Смысл решения любого примера состоит в том, чтобы найти такое значение выражения, которое превращает его в верное равенство.
Для формирования представлений о верных и неверных равенствах в учебнике 1 класса используются примеры с окошком.
Например:
Вставь в окошки подходящие числа:
5-1=□ □ + □ = 4 □ -□ = □ 5-□ = 4.
Методом подбора ребенок находит подходящие числа и проверяет верность равенства вычислением.
Процесс сравнения чисел и обозначение отношений между ними с помощью знаков сравнения приводит к получению неравенств.
Например: 5 < 7; 6 > 4 — числовые неравенства
Неравенства также могут быть верными и неверными.
Например:
Подбери числа так, чтобы записи были верными:
□ >□;□<□.
Методом подбора ребенок находит подходящие числа и проверяет верность неравенства.
Числовые неравенства получаются при сравнении числовых выражений и числа.
Например: _
Поставь знаки <=>:
5+1* 7; 6-3*3; 7 + 3* 9; 10-2*7.
При выборе знака сравнения ребенок вычисляет значение выражения и сравнивает его с заданным числом, что отражается в выборе соответствующего знака:
10-2>7 5+К7 7 + 3>9 6-3 = 3
Возможен другой способ выбора знака сравнения — без ссылки на вычисления значения выражения.
Например:
Поставь знаки <=>: 7 + 2*7; 10-3* 10.
Для постановки знаков сравнения можно провести такие рассуждения:
Сумма чисел 7 и 2 будет заведомо больше, чем число 7, значит, 7 + 2>7.
Разность чисел 10 и 3 будет заведомо меньше, чем число 10, значит, 10 - 3 < 10.
Числовые неравенства получаются при сравнении двух числовых выражений.
Сравнить два выражения — значит сравнить их значения. Например:
Поставь знаки <=>: 35 • 1 * 35 • 0 + 35 48 : 4 * 52 : 4
При выборе знака сравнения ребенок вычисляет значения выражений и сравнивает их, что отражается в выборе соответствующего знака:
35•1*35•0 + 35 48:4<52:4
\/ \/ / \/ \/
35 0 12 13
Возможен другой способ выбора знака сравнения — без ссылки на вычисления значения выражения. Например:
Поставь знаки <=>:
6 + 4*6 + 3 7-5*7-3 90: 5 * 90: 10
Для постановки знаков сравнения можно провести такие рассуждения:
Сумма чисел 6 и 4 больше суммы чисел 6 и 3, поскольку 4 > 3, значит, 6 + 4 > 6 + 3.
Разность чисел 7 и 5 меньше, чем разность чисел 7 и 3, поскольку 5 > 3, значит, 7 - 5 < 7 - 3.
Частное чисел 90 й 5 больше, чем частное чисел 90 и 10, поскольку при делении одного и того же числа на число большее, частное получается меньшее, значит, 90 : 5 > 90 : 10.
Для формирования представлений о верных и неверных равенствах и неравенствах в новой редакции учебника (2001) используются задания вида:
Проверь, верны ли неравенства:
45 - 18 < 42; 50 - 8 < 58 - 10; 27 + 15 > 32; 64 - 7 > 64 - 9
Выпиши верные равенства и неравенства:
9 дес. 9 ед. > 100; 5 см 6 мм = 65 мм; 69 + 8 = 77; 90 - 7 < 89
Для проверки используется метод вычисления значения выражений и сравнения полученных чисел.
Неравенства с переменной практически не используются в последних редакциях стабильного учебника математики, хотя в более ранних изданиях они присутствовали. Неравенства с переменными активно используются в альтернативных учебниках математики. Это неравенства вида:
□ + 7 < 10; 5 - □ > 2; □ > 0; □ > □
После введения буквы для обозначения неизвестного числа такие неравенства приобретают привычный вид неравенства с переменной:
а + 7> 10; 12-d<7.
Значения неизвестных чисел в таких неравенствах находятся методом подбора, а затем подстановкой проверяется каждое подобранное число. Особенность данных неравенств состоит в том, что могут быть подобраны несколько чисел, подходящих к ним (дающих верное неравенство).
Например: а + 7 > 10; а = 4, а = 5,<я = 6ит. д. — количество значений для буквы а бесконечно, для данного неравенства подходит любое число а > 3; 12 - d < 7; d = 6, d = 7, d = 8, d = 9, d = 10, d = 11, d = 12 — количество значений для буквы d конечно, все значения могут быть перечислены. Ребенок подставляет каждое найденное значение переменной в выражение, вычисляет значение выражения и сравнивает его с заданным числом. Выбираются те значения переменной, при которых неравенство является верным.
В случае бесконечного множества решений или большого количества решений неравенства ребенок ограничивается подбором нескольких значений переменной, при которых неравенство является верным.
Уравнение
Равенство с неизвестным числом называют уравнением. Например: х + 23 = 45; 65-х= 13; 12 х = 48; 45:х=3. Решить уравнение — значит найти такое значение неизвестного числа, при котором равенство будет верным. Это число называют корнем уравнения. Например: 1
х + 23 - 45; х = 22, так как 22 + 23 = 45.
Таким образом, данное определение задает также способ проверки уравнения: подстановка найденного значения неизвестного числа в выражение, вычисление его значения и сравнение полученного результата с заданным числом (ответом).
Если значение неизвестного числа найдено верно, то получается верное равенство.
В начальной школе рассматриваются два способа решения уравнения.
Способ подбора
Подбирается подходящее значение неизвестного числа либо из заданных значений, либо из произвольного множества чисел.
Выбранное число должно при подстановке в выражение превращать его в верное равенство. Например:
Из чисел 7, 10, 5, 4, 1, 3 подбери для каждого уравнения такое значение х, при котором получится верное равенство: 9 + х= 14 7-х=2 х-1 = 9 х+5 = 6
Каждое из предложенных чисел проверяется подстановкой в выражение и сравнением полученного значения с ответом.
9+7=14 | 7-7=2 | 7-1=9 | 7+5=6 |
9+10=14 | 7-2=2 | 10-1=9 | 10+5=6 |
9+5=14 | 7-4=2 | 5-1=9 | 5+5=6 |
9+4=14 | 7-1=2 | 4-1=9 | 4+5=6 |
9+1=14 | 7-3=2 | 1-1=9 | 1+5=6 |
9+3=14 |
| 3-1=9 | 3+5=6 |
При большом количестве предложенных значений этот способ отнимает много времени и сил. При самостоятельном подборе значений выражений ребенок может не найти самостоятельно возможное значение неизвестного.
Способ использования взаимосвязи компонентов действий
Используются правила взаимосвязи компонентов действий.
Например:
Реши уравнение:
9 + х= 14
Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое. Значит, х = 14 - 9; х = 5.
Реши уравнение:
7-х=2
Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое нужно из уменьшаемого вычесть разность. Значит, х = 7 - 2; х = 5.
Реши уравнение:
х-1 = 9
Неизвестно уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое. Значит, х = 9 + 1; х = 10.
Для решения уравнений с действиями умножения и деления используются правила зависимости компонентов умножения и деления.
Например:
Реши уравнение:
96:х=24
Неизвестен делитель. Чтобы найти неизвестный делитель, нужно делимое разделить на частное. Значит, х = 96 : 24; х = 4. Проверим решение: 24 • 4 = 96.
Реши уравнение:
х:23 = 4
Неизвестно делимое. Чтобы найти неизвестное делимое, нужно делитель умножить на частное. Значит, х = 23 • 4; х = 92. Проверим решение: 92 : 23 = 4.
Реши уравнение:
х- 14 = 84
Неизвестен множитель. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель. Значит, х = 84 : 14; х = 6. Проверим решение: 6 • 14 = 84.
Использование данных правил дает более быстрый способ решения уравнений. Трудность заключается в том, что многие дети путают правила взаимосвязи компонентов действий и названия компонентов (необходимо хорошо знать 6 правил и названия 10 компонентов).
Для более трудных уравнений используется метод подбора, например:
35 + х + х + х = 35 — очевидно, что неизвестное может принимать только нулевое значение;
78 - х - х = 76 — очевидно, что х = 1, поскольку 78 - 1 - 1 = 76.
Для уравнений со скобками вида (6 + х) - 5 = 38 используется правило взаимосвязи компонентов действий. Левую часть уравнения рассматривают сначала как разность, считая выражение в скобках единым неизвестным компонентом. Этот единый неизвестный компонент — уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое:
(6 + *)-38+5;
6 + *-43.
Таким образом уравнение приобретает привычный вид. В этом уравнении требуется найти неизвестное слагаемое: х = 43 - 6; х = 37.
Проверим решение (подставим найденное значение неизвестного в первоначальное выражение): (6 + 37) - 5 = (6 - 5) + 37 = 1 + 37 = 38.
Ряд альтернативных учебников математики для начальных классов практикует знакомство детей с более сложными уравнениями (И.И. Аргинская, Л.Г. Петерсон), для решения которых правила взаимосвязи компонентов действий рекомендуется применять многократно.
Например:
Реши уравнение:
(y-3)·5- 875 = 210
Решение:
Рассмотрим левую часть уравнения и определим порядок действий.
(у-3)-5-875-210
Вид выражения в левой части определяем по последнему действию: последнее действие — вычитание, значит, начинаем рассматривать выражение как разность.
Уменьшаемое (у - 3) • 5, вычитаемое 875, значение разности 210.
Неизвестное содержится в уменьшаемом. Найдем уменьшаемое (рассматриваем все это выражение как единое уменьшаемое): чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
(y-3) • 5 = 210 + 875;
(y - 3) • 5 - 1085
Снова определим порядок действий: (у - 3) • 5 = 1085.
По последнему действию считаем выражение в левой части произведением. Первый множитель (y - 3), второй множитель 5, значение произведения 1085. Неизвестное содержится в первом множителе. Найдем его (считаем все выражение у - 3 неизвестным). Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
у - 3 - 1085 : 5;
у- 3 = 215.
Получили уравнение, в котором неизвестно уменьшаемое. Найдем его:
y - 215 + 3; у-218,
Проверим решение, подставив найденное значение неизвестного в первоначальное уравнение: (218-3) -5-875 = 210.
Вычислив значение левой части, убеждаемся в том, что получено верное равенство. Значит, уравнение решено верно.
Анализ приведенного способа решения показывает, что это длительный трудоемкий процесс, требующий от ребенка четкого знания всех правил, высокого уровня анализа и умения воспринимать комплексную структуру переменного, получаемую при пошаговом решении, как единое целое (высокий уровень синтеза и абстрагирования).
Взрослый, знакомый с универсальным методом решения подобных уравнений, применяемым в старших классах (раскрытие скобок, перенос компонентов уравнения слева направо) хорошо видит несовершенство и излишнюю трудоемкость этого метода. В связи с этим рядом методистов справедливо высказываются сомнения в целесообразности активного внедрения уравнений такой сложной структуры в курс математики начальной школы. Этот способ решения является нерациональным с математической точки зрения и будет забыт и отброшен, как только учитель математики в 5—7 классах познакомит ребенка с общими приемами решения уравнений подобного вида.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература