2. Табличное умножение
Изучение таблицы умножения является центральной задачей обучения математике во 2 и 3 классе.
К табличному умножению относят случаи умножения однозначных натуральных чисел на однозначные натуральные числа, результаты которых находят на основе конкретного смысла действия умножения (находят суммы одинаковых слагаемых).
Результаты табличного умножения в соответствии с программными требованиями к знаниям, умениям и навыкам дети должны знать наизусть. Умножение с числом нуль, умножение с числами 1 и 10 относят к особым случаям.
Первые приемы составления таблиц умножения связаны со смыслом действия умножения (см. предыдущий пункт). Результаты этих таблиц получают последовательным сложением одинаковых слагаемых.
Например:
Умножение числа 2 |
|
| 0 | 0 |
Вычисли и запомни: |
|
|
|
|
2+2 | 2 | •2 | 0 | 0 |
2 + 2 + 2 | 2 | •3 | 0 | 0 |
2+2+2+2 | 2 | •4 | 0 | 0 |
2+2+2+2+2 | 2 | •5 | 0 | 0 |
Расположенный рядом рисунок помогает ребенку получить результат пересчетом фигурок. При небольших значениях множителей прием сосчитывания для получения табличного значения произведения вполне приемлем, и учитель им часто пользуется при получении результатов таблиц значений умножения чисел 2, 3, 4. Приведенный пример показывает, что этот прием удобен лишь при небольших значениях второго множителя.
При значении второго множителя больше 5, удобнее использовать для получения результатов табличных значений другой прием: прием прибавления к предыдущему результату. Например:
Вычисли и запомни: 2-6 = 2.5 + 2 = ... 2-7 = 2.6 + 2 =... 2-8 = 2.7 + 2 2.9 = 2-8 + 2 =...
В учебнике математики для 2 класса этот прием дан более пространно, и поэтому не всегда правильно понимается с точки зрения техники выполнения:
2+2+2+2+2+2 2-6
2 + 2 + 2 + 2 + 2 + 2 + 2 2-7ит.п.
Аналогичным образом составляется таблица значений умножения числа 3.
Следующим приемом, на основе которого составляются таблицы значений умножения чисел, является прием перестановки множителей.
Этот прием фактически является первым математическим законом относительно действия умножения в начальной школе:
От перестановки множителей произведение не меняется.
Способ знакомства детей с этим правилом (законом) обусловлен ранее введенным смыслом действия умножения. Используя предметные модели множеств, дети сосчитывают результаты группировки их элементов разными способами, убеждаясь, что результаты не меняются от изменения способов группировки.
Например:
2*3 = 6
3*2=6
Счет элементов рисунка (множества) парами по горизонтали совпадает со счетом элементов тройками по вертикали. Рассмотрение нескольких вариантов подобных случаев дает учителю основание произвести индуктивное обобщение (т. е. обобщение нескольких частных случаев в обобщенном правиле) о том, что перестановка множителей не меняет значение произведения.
На основе этого правила, используемого как прием счета, составляется таблица умножения на 2.
Например:
Используя таблицу умножения числа 2, вычисли и запомни таблицу умножения на 2:
3 = 6
4 = 8 5= 10
6 = 12
7 = 14
8 = 16 9= 18
2 = 2 = 2 = 2 = 2 = 2 = 2 =
На основе этого же приема составляется таблица умножения на 3:
3-4 = 12 3-7 = 21 4-3 = ... 7-3=...
3-5= 15 3-8 = 24 5-3 = ... 8-3 = ...
3-6 = 18 3-9 = 27 6-3=... 9-3 = ...
Составление двух первых таблиц распределяется на два урока, что соответственно увеличивает время, отведенное на их заучивание. Каждая из двух последних таблиц составляется на одном уроке, поскольку предполагается, что дети, зная исходную таблицу, не должны отдельно заучивать результаты таблиц, полученных с помощью перестановки множителей. На самом деле, многие дети учат каждую таблицу отдельно, поскольку недостаточный уровень развития гибкости мышления не позволяет им легко перестроить модель заученной схемы табличного случая в обратном порядке. При вычислении случаев вида 9 • 2 или 8 • 3 дети снова возвращаются к приему последовательного сложения, что естественно требует времени для получения результата. Такая ситуация порождается скорее всего тем, что для значительного числа детей такое разнесение во времени взаимосвязанных случаев умножения (тех, что связаны правилом перестановки множителей) не позволяет сформироваться ассоциативной цепочке, ориентированной именно на взаимосвязь. Та же ситуация прослеживалась у ряда детей при применении свойства перестановки слагаемых для составления таблиц сложения: запомнив случай 3 + 5, такой ребенок учит отдельно случай 5 + 3, поскольку требование выучить этот случай поступает от учителя через 16 уроков после требования заучить первый, и при этом в промежутке заучивалась таблица вида □ + 4, □ - 4. Иными словами, отсрочка в образовании ассоциативной связи, ориентированной на взаимосвязь этих случаев, оказалась для ребенка слишком большой, что помешало образованию такой связи. Поэтому каждый случай из фактически взаимосвязанной пары учится ребенком наизусть отдельно.
При составлении таблицы умножения числа 5 в 3 классе, только первое произведение получают путем сложения одинаковых слагаемых: 5-5 = 5 + 5 + 5 + 5 + 5 = 25. Остальные случаи получают приемом прибавления пяти к предыдущему результату:
5-6 = 5- 5 + 5 = 30 5-7 = 5-6 + 5 = 35 5-8 = 5-7 + 5 = 40 5-9 = 5- 8 + 5 = 45
Одновременно с этой таблицей составляется и взаимосвязанная с ней таблица умножения на 5: 6 • 5; 7 • 5; 8 • 5; 9 • 5.
Таблица умножения числа 6 содержит четыре случая: 6 • 6; 6 • 7; 6-8; 6-9.
Таблица умножения на 6 содержит три случая: 7 • 6; 8 • 6; 9 • 6.
Таблица умножения числа 7 содержит три случая: 7 • 7; 7 • 8; 7 • 9.
Таблица умножения на 7 содержит два случая: 8 • 7; 9 • 7.
Таблица умножения числа 8 содержит два случая: 8 • 8; 8 • 9.
Таблица умножения на 8 содержит один случай: 9 • 8.
Таблица умножения числа 9 содержит, только один случай: 9 • 9.
Теоретический подход к подобному построению системы изучения табличного умножения предполагает, что именно в таком соответствии ребенок и будет запоминать случаи табличного умножения.
Наибольшее количество случаев содержит наиболее легкая для запоминания таблица умножения числа 2, а наиболее трудная для запоминания таблица умножения числа 9 содержит всего один случай. Реально, рассматривая каждую новую «порцию» таблицы умножения, учитель обычно восстанавливает весь объем каждой таблицы (все случаи). Даже при условии, что учитель обращает внимание детей на то, что новым случаем на данном уроке является, например, только случай 9 • 9 , а 9 • 8 , 9 • 7 и т. п. изучались на предыдущих уроках, большая часть детей воспринимает весь предложенный объем как материал для нового заучивания. Таким образом, фактически, для многих детей таблица умножения числа 9 является самой большой и сложной (а это действительно так, если иметь в виду перечень всех случаев, который к ней относится).
Большой объем материала, требующего заучивания наизусть, сложность в образовании ассоциативных связей при запоминании взаимосвязанных случаев, необходимость достижения всеми детьми прочного запоминания всех табличных случаев наизусть в установленные программой сроки — все это делает тему изучения табличного умножения в начальных классах одной из наиболее методически сложных. В связи с этим важными являются вопросы, связанные с приемами запоминания ребенком таблицы умножения.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература