Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
Рассмотрим различные подходы к определению понятия «математическое развитие» ребенка. Анализ литературы показывает, что авторы по-разному понимают этот термин. В основном имеют место две трактовки этого понятия.
В первом случае «математическое развитие» ассоциируется с понятием «математические способности», которые имеют природный характер. В этом случае успешность ребенка в освоении математического содержания связывается педагогами с наличием этих природных способностей и отрицанием возможности методически влиять на них. Как следствие на практике часто наблюдается ориентация педагогов более на природные данные ребенка, чем на поиск и применение методик организации математического развития ребенка, обладающего слабыми природными способностями к математике.
Во втором случае под «математическим развитием» понимают формирование и накопление математических знаний и умений у ребенка. Предполагается, что развитие умственных способностей при этом достигается косвенным путем: в процессе усвоения знаний. Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать соответствующий метод обучения, чтобы сделать этот процесс продуктивным, т. е. получать в результате высокое математическое развитие у всех детей. Данный подход в значительной мере пытались реализовать при создании различных альтернативных учебников математики для начальной школы (Л.В. Занков, В.В. Давыдов, Н.Я. Виленкин, A.M. Пышкало и др.), наполняя эти учебники различным содержанием: увеличивали долю арифметического материала, долю алгебраического материала, вводили элементы теории множеств, комбинаторики, алгоритмики и др. Апробации этих учебников на протяжении более 40 лет показала, что заметного влияния на уровень математического развития младших школьников эти системы не оказывают. При этом очевидно, что говорить об отсутствии влияния содержания обучения на развитие как математического мышления, так и общего развития мышления ребенка неправомочно.
В исследованиях Д .Б. Эльконина и В.В. Давыдова было достаточно убедительно доказано, что проблема обновления содержания обучения в начальных классах является частью проблемы организации развивающего обучения ребенка младшего школьного возраста. Психологическое обоснование важности и особой значимости этой проблемы было разработано Д.Б. Элькониным (1960, 1966) и В.В. Давыдовым (1966,1972), в исследованиях которых было детально показано, что одним из решающих факторов в развитии мышления младших школьников выступает содержание обучения. Известный советский кибернетик А.А. Фельдбаум отмечал: «Накопление знаний играет в процессе обучения немалую, но отнюдь не решающую роль. Человек может забыть многие конкретные факты, на базе которых совершенствовались его качества. Но если они достигли высокого уровня, то человек справится со сложнейшими задачами, а это и означает, что он достиг высокого уровня культуры»1 (т. е. мышления). Таким образом, связь между содержанием обучения и процессом развития мышления ребенка, несомненно, существует, но ее нельзя считать достаточным условием обеспечения математического развития ребенка. В то же время психологически и дидактически обоснованный отбор этого содержания, несомненно, будет играть значительную роль в процессе создания управляемой системы математического развития ребенка.
Под математическим развитием ребенка младшего школьного возраста будем понимать целенаправленное и методически организованное формирование и развитие совокупности взаимосвязанных основных (базовых) свойств и качеств математического мышления ребенка и его способностей к математическому познанию действительности. Такое развитие задает главную целевую установку обучения математике детей младшего возраста.
Методическая система (включая технологию) непрерывного математического развития ребенка младшего возраста, предоставляющая каждому ребенку условия для индивидуального продвижения в математическом содержании (траектории) будет способствовать:
практическому созданию единой системы преемственного дошкольного и начального обучения математике;
достижению оптимально возможного для ребенка, соответствующего возрастному этапу уровня математического развития.
Таким образом, мы полагаем, что понятие «математическое развитие» ребенка дошкольного и младшего школьного возраста не следует полностью ассоциировать с понятием «математические способности» (природного характера). Успешность ребенка в освоении математического содержания во многих случаях связана с наличием этих природных способностей, но организация математического развития ребенка, обладающего слабыми природными способностями к математике, вполне возможна при условии применения соответствующих методик. При этом в одних случаях процесс целенаправленного математического развития ребенка будет приводить к дальнейшему развитию природных математических способностей, в других случаях — к оптимальному развитию необходимых для успешного усвоения математического содержания свойств и качеств мышления, в третьих случаях — к коррекции недостатков познавательного развития ребенка и создании предпосылок для более успешного усвоения математического содержания при дальнейшем обучении.
Целенаправленная работа по организации математического развития ребенка младшего школьного возраста будет способствовать общему повышению уровня развития интеллектуальных (умственных) способностей каждого ребенка, что в свою очередь благоприятно отразится на успешности обучения детей предметному содержанию. Эта работа будет также способствовать личностному развитию ребенка, поскольку такие качества математического стиля мышления как целеустремленность, критичность, широта, гибкость, организованность, логичность и др. являются в то же время личностными характеристиками качеств ума и характера человека.
Итак, цель математического развития ребенка младшего школьного возраста — это стимуляция и развитие математического мышления (соответствующих возрасту компонентов и качеств этого мышления).
Психолого-дидактическим обоснованием этого подхода является своеобразие возрастного развития познавательных и когнитивных процессов ребенка младшего возраста, обусловленное тем, что в возрасте 3—5 лет ведущим типом мышления ребенка является наглядно-действенный тип, а в возрасте 6—10 лет — наглядно-образный тип мышления. Возраст 10—12 лет является переходным к ведущему абстрактному (словесно-логическому) типу мышления.
Это обусловливает необходимость использования для организации математического развития ребенка на каждом из обозначенных этапов соответствующего содержания и методологии, максимально соответствующих «детскому способу» вхождения в математику оптимально возрасту ребенка. Опора на ведущий тип мышления ребенка дает основание сделать вывод: главным направлением организации математического развития ребенка дошкольного возраста является целенаправленное развитие конструктивного мышления, а ребенка младшего школьного возраста — развитие пространственного мышления. Эти виды математического мышления сенситивны указанным возрастам, и потому наиболее чувствительны к методическому развивающему воздействию педагога. Таким образом, наиболее способствующей математическому развитию ребенка младшего школьного возраста будет та система обучения математике (и, соответственно, те учебники), которая в 1 классе (6 лет) предусматривает специальную методическую работу по развитию конструктивного мышления ребенка, а во 2—4 классах — специальную работу по развитию пространственного мышления в сочетании с активной пропедевтикой основ словесно-логического мышления.
Методологическим обоснованием предлагаемой концепции является выбор в качестве ведущего метода обучения детей математическому содержанию метода моделирования, с преимущественным использованием на каждом возрастном этапе того вида моделирования, который более всего соответствует возрастным особенностям развития мышления и других познавательных процессов. В возрасте 3—5 лет — это конструирование (вещественное моделирование); в возрасте 6—10 лет — сочетание конструирования с графическим моделированием (с постепенным перенесением акцента на последнее), в возрасте 10—12 лет — графическое моделирование с элементами конструирования (там, где необходимо практическое приложение знаний и умений ребенка в математике), и с элементами логико-символического моделирования (знакового и символьного) в качестве подготовки к переходу ребенка на ведущий словесно-логический (абстрактный) тип мышления в старшем возрасте. Такой подход к выбору ведущего метода обучения обеспечивает эффективное развитие приемов умственной деятельности у ребенку (анализа, синтеза, абстрагирования, обобщения и др.), развитие практико-ориентированной интуиции в применении математических знаний, самостоятельности в учебно-познавательной деятельности и таких качеств математического мышления как гибкость, критичность, активность, целенаправленность и др.
Модель изучаемого математического понятия или отношения играет роль универсального средства изучения свойств математических объектов. При таком подходе к формированию начальных математических представлений не только учитывается специфика математики (науки, изучающей количественные и пространственные характеристики реальных объектов и процессов), но и происходит обучение ребенка общим способам деятельности с математическими моделями реальной действительности и способам построения этих моделей.
Являясь общим приемом изучения действительности, моделирование позволяет эффективно формировать такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Таким образом, можно считать, что данный подход будет обеспечивать формирование и развитие математического мышления ребенка, а, следовательно, будет обеспечивать его математическое развитие.
Глава 2
Изучение чисел в начальной школе
Лекция 5. Понятие числа и числа первого десятка
1. Основные понятия.
2. Однозначные числа.
3. Порядок следования чисел в ряду.
4. Состав однозначных чисел.
5. Число 0.
6. Сравнение чисел.
7. Число 10.
1. Основные понятия
Целые неотрицательные числа называют натуральными в связи с тем, что они были придуманы человечеством для счета элементов реальных множеств (животных, людей, различных предметов), а также для обозначения результатов процесса измерения величин (длины, массы, емкости, времени, площади и др.).
Таким образом, различают число как результат счета элементов множества и число как результат измерения величин (длина, масса, время и т. д.).
Альтернативные программы по математике для начальных классов различаются главным образом способом знакомства ребенка с этими характеристиками числа.
Как и многие математические понятия, понятие натурального числа возникло из потребностей практики. Уже в глубокой древности нужно было сравнивать между собой различные множества.
Простейшим способом сравнения множеств было установление взаимно-однозначного соответствия между множествами, т. е. образование пар элементов из обоих множеств. Если такое соответствие имело место, то множества считались равночисленными (все пары — полные).
Если взаимно-однозначное соответствие устанавливалось между элементами одного множества и только частью элементов второго, множества (некоторые элементы второго множества оставались без пары), то считали, что в первом множестве меньше элементов, чем во втором.
□□□□□□□□
○ ○ ○ ○ ○ ○
Например: Чего больше, кружков или квадратов?
При этом хорошо видно, что считать пары нет надобности, оставшиеся без пары («лишние») фигуры покажут, каких было больше (и на сколько больше).
Со временем для сравнения стали применять множества-посредники (пальцы, камешки, узелки...) — их называют «числовые фигуры»; на следующем этапе в результате процесса абстрагирования от характера множеств-посредников появилось понятие числа: один, два, три и т. д.
Наука, изучающая числа и действия с ними получила название «арифметика» (от греческого arithmos — число).
Число — это количественная характеристика множества предметов (группы).
Натуральные числа обозначают при счете реальные предметы. Следует помнить, что само по себе число не зависит от характера и свойств предметов множества, т. е. одно и то же число может символизировать количество объектов какого угодно характера.
Каждая группа (множество) может быть охарактеризовано только одним числом (и если при повторном пересчете объектов получается другой результат, это означает ошибку счета).
Цифра — это символ, обозначающий число на письме. Число мы называем и слышим. Цифру мы видим, пишем и называем.
Цифры имеют различное изображение. Общеупотребимы цифры, которые принято называть арабскими (хотя, они имеют индийское происхождение): 1, 2,3,4,5, 6, 7,8,9 и римские: I, II, III, IV, V, VI, VII, VIII, IX, X...
Римские цифры употребляются только в печатном изображении, арабские цифры — в печатном (1, 2, 3,4, 5, 6, 7, 8, 9) и курсивном (прописном) изображении (1,2,3, 4, 5, 6, 7, 8, 9).
В любой из упомянутых систем обозначения чисел больше, чем цифр.
Натуральные или целые положительные числа 1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15,записанные в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.
Отрезок натурального ряда чисел — это часть ряда вида: 1, 2, 3, 4,5, 6,7 или 1, 2, 3 или 1, 2,3,4, 5,6, 7,8,9,10, И. По определению, отрезок натурального ряда длиной а — это все числа b, такие что b≤а.
Все натуральные числа записать невозможно, поскольку в натуральном ряду нет последнего числа. За каждым натуральным числом следует другое натуральное число.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература