4. Площадь
Площадь геометрической фигуры — это свойство фигуры занимать измеряемое место на плоскости. Площадь фигуры измеряют с помощью единиц площади (м2, дм2, см2, мм2).
В дошкольном возрасте дети сравнивают площади предметов, не называя этот термин, путем наложения предметов, путем сопоставления предметов по занимаемому месту на столе, земле.
В 1—3 классах уточняются представления о площади фигур как о свойстве плоских геометрических фигур (вырезать квадрат и разделить на 2 треугольника, вырезать 2 треугольника и составить один). При выполнении аналогичных заданий дети знакомятся с некоторыми свойствами площади:
1) площадь фигуры не изменяется при изменении ее положения на плоскости;
2) часть предмета всегда меньше целого;
3) из одних и тех же заданных фигур можно составить различные геометрические фигуры.
Само понятие «площадь фигуры» в новом издании учебника вводится в 3 классе. Дети выполняют задания следующих видов: 1) сравнение площадей фигур методом наложения:
Сравни площади круга и треугольника:
(Площадь треугольника меньше площади круга, а площадь круга больше площади треугольника.)
2) сравнение площади фигур по количеству равных квадратов (или любых других мерок):
Сравни площади фигур:
(Площади всех фигур равны, т. к. фигуры состоят из 4равных квадратов.)
3) вычерчивание фигур, состоящих из заданного количества квадратов. /
Эти задания формируют у детей понятие о площади как о числе квадратных единиц, содержащихся в геометрической фигуре.
Квадратный сантиметр — метрическая мера площади. Один квадратный сантиметр — это площадь квадрата, сторона которого равна 1 см. Запись: 1 см2.
Выполняются задания следующих видов:
1) определение площади геометрической фигуры путем подсчета квадратных сантиметров содержащихся в данной фигуре;
2) сопоставление длины отрезка и площади фигуры:
Начерти квадрат, сторона которого 4 см. Найди его площадь и периметр.
3) измерение и определение площади фигуры с использованием формулы
S = a - b
Сама формула в 3 классе не рассматривается, дается лишь словесная формулировка:
Чтобы вычислить площадь прямоугольника, измеряют его длину и ширину (в одинаковых единицах) и находят произведение полученных чисел.
Используя правило, решают задачи вида:
Вычисли площадь прямоугольника, длины сторон которого 9 см и 2 см.
Квадратный дециметр — метрическая мера площади. Один квадратный дециметр — это площадь квадрата, сторона которого равна 1 дм. Запись: 1 дм2.
Метрическое соотношение: 1 дм2 = 100 см2.
Выполняются задания следующих видов:
1) вычерчивание в тетради квадрата со стороной 1 дм, деление его на квадратные сантиметры (дети убеждаются в правильности соотношения: 1 дм2 = 100 см2);
2) определение площади фигур в дм2:
Высота зеркала прямоугольной формы 12 дм, а ширина 5 дм. Чему равна площадь зеркала?
Квадратный метр — метрическая мера площади. Один квадратный метр — это площадь квадрата, сторона которого равна 1 м. Запись: 1 м2. Метрическое соотношение: 1 м2 = 100 дм2 1 м2 = 10 000 см2. 1) Школьники решают задачи на определение площади фигур в м2.
Длина комнаты 5 м, а ширина 4 м. Узнай площадь комнаты в м2.
В новом издании учебника дети сразу знакомятся со всеми остальными единицами площади: квадратный миллиметр, квадратный километр, ар pi гектар.
Квадратный миллиметр — метрическая мера площади. Один квадратный миллиметр — это площадь квадрата, сторона которого равна 1 мм. Для наглядного знакомства с квадратным миллиметром удобно использовать миллиметровую бумагу.
Школьники решают задачи на определение площади фигур в мм2.
Для окантовки рисунков вырезали из бумаги полоски прямоугольной формы. Ширина полоски 8 мм, длина 360 мм. Узнай площадь полоски в мм2.
Квадратный километр — метрическая мера площади. Один квадратный километр — это квадрат, сторона которого равна 1 км. Запись: 1 км2.
Для формирования представления об этой мере площади приводят численные примеры, поскольку дать ее наглядное изображение невозможно: Россия занимает площадь более 17 000 000 км2, а площадь Франции — 551 000 км2.
Ар — это квадрат со стороной 10 м.
Запись: 1 а.
Метрическое соотношение: 1 а = 100 м2 В просторечии 1 ар часто называют соткой.
Гектар — это квадрат со стороной 100 м. Запись: 1 га.
Метрическое соотношение: 1 га = 100 а 1 га = 10 000 м2 Дети выполняют задания вида:
Площадь участка прямоугольной формы б соток. Сколько это квадратных метров?
Узнай длину этого участка, если его ширина 20 м. Какая площадь этого участка свободна, если на нем построен дом площадью 56 м2?
Для дачных участков выделили участок земли площадью 56 га 40 а. Сколько получится участков, если площадь каждого будет 10 соток?
Итогом изучения данной темы является составление таблицы
1см2 =100 мм2 1 дм2 = 10 000 мм2
1 дм2 = 100 см2 1 м2 = 10 000 см2
1м2 =100 дм2 1км2 = 1 000 000 м2
1а = 100м 1 км2 = 100 га
1 га = 100 а 1 км2 = 10 000 а
После составления данной таблицы детям предлагают выполнить задания следующих видов:
1) на преобразование единиц одного наименования в единицы других наименований:
Заполни пропуски:
2 см2 = ... мм2
18 см2 = ... мм2
Рассуждение: 1 см2 равен 100 мм2, значит 18 см2 в 18 раз больше, значит 18 • 100 - 1800 мм2
Заполни пропуски:
800 дм2 = ... м2
5000 дм2 = ... м2
Рассуждение: 100 дм2 это 1 м2, а 800 больше 100 в 8 раз, значит 800 дм2 = 8 м2.
2) решение простых задач на определение площади (известны длина и ширина и ладо найти площадь фигуры, либо известна площадь и одна из сторон и требуется найти вторую сторону),
3) решение составных задач.
Зал и коридор имеют одинаковую длину. Площадь зала 300 м2, а площадь коридора 120 м2. Ширина зала 10 м. Чему равна ширина коридора?
Работа над задачей:
Полезно сделать рисунок к задаче:
| Зал | Коридор |
7 | 300 м2 | 120 м2? |
| 10 м | 7 |
Анализ рисунка показывает, что можно найти длину зала: 300 :10 = 30 (м)
Длина коридора — такая же, значит его ширина: 120 : 30 = 4 (м). 5. Время
Время — это длительность протекания процессов. Время имеет как физический, так и философский смысл. Природа времени является темой дискуссии великих умов человечества на протяжении веков и тысячелетий. Но, все-таки время — это объективная реальность, данная нам в ощущениях. Проблема в том, что ощущение времени субъективно, поэтому полагаться на чувства в его оценках и сравнении, как это можно сделать в какой-то мере с другими величинами, невозможно. Каждый знает, что в одних обстоятельствах час или даже день может «промелькнуть как миг», а минуты могут тянуться бесконечно. В связи с этим практически сразу дети начинают знакомиться с приборами, измеряющими время объективно, т. е. независимо от ощущений человека.
При знакомстве с понятием время, на первых порах намного полезнее использовать песочные часы, чем часы со стрелками или электронные, поскольку ребенок видит, как сыплется песок и может зафиксировать какой-то образ процесса (пусть и косвенный). Песочные часы удобно также использовать в качестве промежуточной меры при измерении времени (собственно, именно для этого они и придуманы).
Работа с величиной время осложнена для ребенка большим количеством понятий, которые он должен просто выучить наизусть и научиться применять, что достигается путем многократных повторений до полного запоминания. Кроме того, время — это процесс, который не воспринимается сенсорикой ребенка непосредственно: в отличие от массы или длины его нельзя потрогать или увидеть. Этот процесс воспринимается человеком опосредованно, по сравнению с длительностью других процессов, оцениваемых и воспринимаемых сенсорикой. При этом привычные стереотипы сравнений: ход солнца по небу, движение стрелок в часах и т. п. как правило чересчур длительны, чтобы ребенок этого возраста действительно мог их оценивать.
Поэтому «Время» — одна из самых трудных тем в начальной школе.
Первые временные представления формируются в дошкольном возрасте: смена времен года, смена дня и ночи.
В 1 классе у детей формируются временные представления в результате практической деятельности, связанной с учетом длительности процессов: выполнение режимных моментов дня, ведение календаря погоды, знакомство с днями недели, их последовательностью, дети знакомятся с часами и ориентированием по ним в связи с посещением школы.
Во 2 классе дети знакомятся с такими единицами времени как час, минута, учатся определять время по циферблату часов.
На этом уроке речь идет не столько о времени как таковом, сколько об устройстве часов, о функциях стрелок. Маленькая стрелка часов — часовая. Она проходит от одной большой черточки до другой за 1 час. Большая стрелка — минутная. Она проходит от одной маленькой черточки до другой за 1 минуту.
В 1 часе — 60 минут.
Дети выполняют задания следующих видов:
1. Сколько времени показывают часы?
2. Как будут расположены стрелки, когда пройдет 1 час?
3. От школы до булочной Оля шла 5 минут, а от булочной до дома на 2 минуты больше. Сколько минут шла Оля от школы до дома?
4. Экскурсия в городской парк продолжалась 50 минут, из них 15 минут пошло на дорогу до парка и обратно. Сколько времени дети провели в парке?
5. Домашнее задание по математике заняло у Коли 15 минут, по русскому языку — 10 минут, по чтению — 20 минут. Сколько времени потратил Коля на выполнение всех домашних заданий?
Тип данных задач и способ их решения детям уже известны, новыми являются только наименования величин, с которыми приходится работать. Более подробно и полно эта тема изучается в 3 классе.
Во 2 классе предлагается для решения задача, в которой идет речь о неизученной единице времени — неделе. Предполагается, что дети знакомы с этой единицей практически.
На каникулах Ваня был в лагере 7 недель, а остальное время—у бабушки в деревне. В деревне он был на 2 недели меньше, чем в лагере. Сколько недель длились каникулы?
Предлагаемая задача знакомого типа, новыми являются только наименования величин.
В 3 классе дети знакомятся с такими единицами времени как год, месяц, неделя, сутки, уточняют представление о часе и минуте.
При знакомстве с понятиями год, месяц, неделя дети ведут активную работу с календарем. Они определяют, сколько месяцев в году, с какого месяца начинается год, называют все месяцы по порядку, определяют количество дней в каждом месяце.
При знакомстве с понятием сутки дети сталкиваются с целой последовательностью «дополнительных» понятий: вчера, сегодня, завтра, послезавтра. Они продолжают работу с календарем: определяют, сколько суток в одной неделе, повторяют дни недели, их последовательность; знакомятся с соотношением: 1 сутки = 24 часа.
Выполняются задания следующих видов:
1. Сколько часов в двух сутках?
2. Сколько суток в двух неделях?
3. Одно рыбацкое судно было в море четверо суток, а другое — трое суток.
На сколько часов больше было в море первое судно, чем второе?
4. Сравни
1 нед. * 8 сут. 14 сут. * 2 нед.
25 ч * 1 сут. 1 мес. * 35 сут.
Представление о часе и минуте формируются через восприятие привычных длительностей: один час — это перемена и урок, одна минута — что можно успеть сделать за одну минуту.
Дети знакомятся с соотношением: 1 ч = 60 мин (без точки); продолжают работу с циферблатом: учатся показывать определенное время (сначала целое — 5 часов утра, 6 часов вечера, затем — 6 ч 45 мин).
Предлагаются задачи на определение продолжительности времени события:
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература