2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
Выполнение:
Обозначим неизвестное число буквой а. Составим равенство:
а + 240 : 3 = 500.
Определим порядок действий:
а + 240 : 3 = 500 Выполним деление: 240 : 3 = 80.
Составим новое уравнение: а + 80 = 500.
Неизвестно слагаемое. Для нахождения неизвестного слагаемого вычтем из суммы известное слагаемое: 500 - 80 = 420, значит, а = 420.
3. Объясни, что обозначают выражения: b • 3 — а • 4; (6-3): (а-4).
Выполнение:
Выражение b • 3 - а • 4 читают так: разность двух произведений, из которых первое — произведение чисел b и 3, а второе — произведение чисел а и 4.
Выражение (6 • 3) : (а • 4) читают так: частное двух произведений, из которых первое — произведение чисел b и 3, а второе — произведение чисел а и 4.
4. В универмаге за день продали 52 одинаковых детских пальто и 38 костюмов по той же цене, что и пальто. За пальто получили на к рублей больше, чем за костюмы. Запиши выражения, которые обозначают, сколько денег получили за пальто и костюмы в отдельности.
Выполнение: ,
Найдем разницу в количестве проданных пальто и костюмов: 52 - 38 = 14 (шт.) — на столько штук пальто продали больше, чем костюмов.
Все пальто одинаковые, значит и цена у них одинаковая. Разница в стоимости по условию равна k рублей, значит можно выразить цену одного пальто:
k : 14 — цена одного пальто, такая же цена одного костюма.
Составим выражение, которое обозначает, сколько денег получили за все пальто:
(k : 14) • 52 рублей получили за все пальто;
(k : 14) • 38 рублей получили за все костюмы.
5. Мальчик купил б тетрадей в клетку и 5 — в линейку по одинаковой цене. Всего он уплатил d рублей. Объясни, что обозначают выражения:
6 + 5 d: (6 + 5) d: (6 + 5) • 6
Выполнение:
Выражение 6 + 5 — обозначает количество купленных тетрадей;
выражение d: (6 + 5) — обозначает цену одной тетради, поскольку все затраченные деньги (d) делятся на все купленные тетради;
выражение d: (6 + 5) • 6 — обозначает стоимость 6 тетрадей в клетку, поскольку цену одной тетради умножают на количество купленных тетрадей.
На втором этапе с помощью уравнений решаются простые задачи.
Традиционный учебник не содержит прямых указаний на необходимость использовать именно этот метод при решении задачи. Данный выбор оставляется на усмотрение учителя.
Например:
В классе 17 мальчиков и еще девочки. Всего в классе 28 человек. Сколько девочек в классе?
Выполнение:
Обозначим количество девочек в классе буквой х. Мы знаем, что всего детей в классе 28 человек. Составим равенство: х + 17 = 28.
В данном уравнении неизвестно слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Значит, х = 28 - 17; х=11.
Проверим решение: 11 + 17 = 28.
Буквой х мы обозначили девочек, значит, в классе 11 девочек.
На третьем этапе уравнения используются при решении составных задач.
Традиционный учебник не содержит прямых указаний на необходимость использовать именно этот метод при решении задачи. Данный выбор оставляется на усмотрение учителя.
Например:
В книге 48 страниц. Даша читала книгу в течение трех дней, по 9 страниц ежедневно. Сколько страниц ей осталось прочитать?
Выполнение:
Обозначим количество оставшихся страниц буквой х.
За три дня Даша прочитала 9 • 3 страниц. Всего в книге 48 страниц. Составим уравнение: х + 9 • 3 = 48.
Упростим уравнение: 9 • 3 = 27, значит, х + 27 = 48.
Неизвестно слагаемое. Найдем его: х = 48 - 27; х = 21.
Буквой х мы обозначили количество оставшихся страниц, значит, осталось прочитать 21 страницу.
Решение задач с помощью уравнений является перспективным с точки зрения преемственности курсом математики средней школы.
Глава 7
Доли и дроби в курсе математики начальных класса
Лекция 18.Система изучения дробей в начальной школе
1. Понятие дроби.
2. Дроби (доли) в 3 классе.
3. Дроби в 4 классе.
4. Дроби величин.
1. Понятие дроби
Темы «Доли» и «Дроби» традиционно присутствовали во всех учебниках по математике для начальных классов. В прежних вариантах учебников тема «Доли» рассматривалась во 2 классе системы 1—3 и в 3 классе системы 1—4. Дети знакомились с понятием доли (дроби вида х/к) и дроби (правильной дроби, в которой числитель меньше знаменателя), учились сравнивать дроби с опорой на предметную модель и решать два вида задач с дробями: нахождение дроби от числа и нахождение числа по его дроби.
На сегодня в соответствии с Обязательным минимумом требований к уровню подготовки выпускников начальной школы объем изучения данной темы значительно сократился в учебниках традиционной содержательной ориентации (учебники М.И. Моро и др., учебники Н.Б. Истоминой). В то же время эта тема значительно расширена в альтернативных учебниках системы Л.В. Занкова, системы В.В. Давыдова и «Школы 2100». В этих методических школах расширение объема знакомства с дробями обусловлено стремлением авторов сформировать у ребенка более общее представление о числе. Поскольку сформировать хоть в какой-то мере обобщенное представление об объекте возможно только в процессе произведения умственных операций над данным объектом (сравнение его с объектами другого рода, выделение сходства и различия, проведение аналогий и др.), необходимо иметь для организации данной умственной деятельности хотя бы два вида объектов. Знакомство младших школьников только с натуральными числами не позволяет проводить такую работу. Дроби не являются натуральными числами (поскольку не являются целыми) — это числа рациональные. Не ввода в словарь ребенка эти термины, можно тем не менее организовать работу по сопоставлению этих двух видов чисел и знакомству с некоторыми сходными операциями с этими числами (соотнесение с предметной моделью, запись, сравнение, сложение и вычитание дробей с одинаковыми знаменателями и т. п.).
В последней редакции традиционного учебника математики понятие «Доля целого» рассматривается в 4 классе (часть 1) и некоторые сведения о дробях даются на последних страницах учебника для 4 класса (часть 2). Задания на нахождение дроби величин и величины по ее дроби встречаются в тексте учебных пособий несколько раз. Мы полагаем, что данная редакция учебника не является последней, поэтому в настоящем учебном пособии даем материал по данной теме в соответствии с традиционным объемом ее изучения в начальных классах и даже чуть шире — для того, чтобы подготовить студентов для работы по альтернативным программам.
Понятие дроби связано с расширением множества целых чисел до множества рациональных чисел. Теоретически считается, что знакомство младших школьников с долями и дробями имеет целью расширение их представлений о числе, однако, практически этого не происходит, поскольку понятие дроби в том виде, в каком оно всегда рассматривалось в начальной школе, с множеством чисел фактически не связывается.
Дробь в классической методической трактовке курса математики для начальных классов — это скорее способ получения части объекта, при этом искомая часть необходимо удовлетворяет ряду специальных требований.
В математике рассматривается два подхода к определению понятия дроби — аксиоматический (через словесное определение и описание свойств) и практический — на основе измерения длин отрезков.
По определению дробь — это число вида , где тип — целые числа, причем п не равно 0.
Далее определяется ряд операций для чисел этого вида (что понимать под сложением и вычитанием дробей, что понимать под умножением и делением дробей, какую дробь считать большей, а какую — меньшей) и ряд свойств, которыми обладают дроби (например, основное свойство дроби: числитель и знаменатель можно умножить или разделить на одно и то же число, при этом значение дроби не изменится).
Такой подход отражен в учебниках для 5—6 классов, что позволяет говорить о возможности формирования понятия дроби как числа.
В учебниках математики для начальных классов отражен другой подход к определению понятия рационального числа (дроби) — через измерение длины отрезка. Для описания результата этого процесса используют дробь.
Суть процесса состоит в следующем: если удается разделить некоторый объект А (например, отрезок) на b равных частей (т. е. взятую мерку b уложить по длине отрезка без остатка) и взять с таких частей, то, результат этой операции можно выразить так:
Получена часть объекта А. При этом не рассматривается как самостоятельное число, а только как « - ая часть объекта А».
Например, для ученика начальных классов фактически не имеет смысла символ сам по себе, так как непонятно, что именно разделено на 4 равные части. В то же время словосочетание « часть яблока» имеет смысл: из него ребенку ясно, что яблоко было разделено на 4 равные части и взята 1 часть.
Таким образом, программой начальных классов не предусмотрено формирование понятия дроби как числа. Сведения о дробях ребенок получает только через практические действия над реальными объектами, величинами, множествами и описание этих действий на языке специальных символов (дробей). Все эти действия считаются подготовкой к знакомству с дробями в 5—6 классе. Данный подход к формированию представлений о долях и дробях реализован во всех альтернативных учебниках математики для начальных классов.
Методическая проблема знакомства ребенка с дробями состоит в выборе учителем целесообразного множества исходных объектов и практических операций, которые ученик будет выполнять над ними. Понятие дроби будет отождествляться с результатом этой операции. Термин «целесообразное множество» подразумевает, что множество выбранных объектов должно делиться нацело, иначе нельзя воплотить требование «равные части», при этом в случае геометрической фигуры можно иметь в виду и равновеликие части, например:
Сформированность представлений о дробях отражается в умении выполнять следующие операции:
1) записывать дробь, ориентируясь на объект или рисунок;
2) сравнивать дроби с опорой на объект или рисунок;
3) находить «дробь от числа» (делением объекта или множества на равные части);
4) восстанавливать число по известной его дроби (обратная операция).
Все эти умения формируются на основе принципа наглядности и неотрывности от предметного содержания.
- Методика обучения математике в начальной школе
- Оглавление
- Глава 1. Общие вопросы методики преподавания
- Глава 2. Изучение чисел в начальной школе.......................................................................48
- Глава 3. Изучение арифметических действий
- Лекция 2. Предмет, задачи и цели изучения курса методики преподавания математики в вузе
- 1. Методика обучения математике младших школьников как учебный предмет
- 2. Методика обучения математике младших школьников как педагогическая наука и как сфера практической деятельности
- Лекция 3. Традиционная и альтернативные системы обучения математике младших школьников
- 1. Краткий обзор систем обучения
- 2. Содержание обязательного минимума образования по математике в начальной школе
- Обязательный минимум содержания образования
- 3. Распределение по годам обучения программного материала по математике в альтернативных системах
- Распределение программного материала по математике в системе л.В. Занкова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе в. В. Давыдова
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «гармония»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «Школа 2100»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Распределение программного материала по математике в системе «начальная школа XXI века»
- 1 Класс
- 2 Класс
- 3 Класс
- 4 Класс
- Лекция 4. Психолого-педагогические основы организации математического развития младших школьников
- 2. Однозначные числа
- 3. Порядок следования чисел в ряду
- 4. Состав однозначных чисел
- 5. Число 0
- 6. Сравнение чисел
- 7. Число 10
- Лекция 6. Разряды числа
- 1. Числа второго десятка (двадцаток)
- 2. Числа первой сотни
- 3. Числа первой тысячи
- 5. Системы счисления
- 2. Вычислительные приемы для чисел первого десятка
- 3. Вычислительные приемы для чисел второго десятка
- Лекция 8. Вычислительные приемы сложения и вычитания для чисел первой сотни
- 1. Используемые математические законы и правила
- 2. Способы устных вычислений
- Заполни пустые окошки в равенствах по образцу:
- 2. Найди значения выражений в каждом столбике, используя первый ответ:
- 3. Вычисли, используя разложение целого числа, заданное схемой:
- 11. Найди и исправь ошибку:
- 3. Способы письменных вычислений (в столбик)
- Лекция 9. Вычислительные приемы сложения и вычитания для чисел первой тысячи и многозначных чисел
- 1. Вычислительные приемы для чисел первой тысячи
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых сотен
- 3. Сложение и вычитание целых десятков, приводящее к действиям в пределах тысячи
- 4. Сложение и вычитание целых десятков, приводящее к действиям в пределах 100
- 2. Вычислительные приемы для многозначных чисел
- 1. Нумерационные случаи
- 2. Сложение и вычитание целых тысяч
- 3. Сложение и вычитание целых тысяч на основе правил арифметических действий
- Лекция 10. Умножение
- 1. Смысл действия умножения
- 1) Произведение делят на множитель.
- 2) Сравнивают полученный результат с другим множителем. Если эти числа равны, умножение выполнено верно.
- 2. Табличное умножение
- 3. Приемы запоминания таблицы умножения
- 1. Прием счета двойками, тройками, пятерками
- 2. Прием последовательного сложения
- 3. Прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата)
- 4. Прием взаимосвязанной пары: 2 • 6 6-2 (перестановка множителей)
- 5. Прием запоминания последовательности случаев с ориентиром на возрастание второго множителя
- 6. Прием «порции»
- 7. Прием запоминающегося случая в качестве опорного
- 8. Прием внешней опоры
- 9. Прием запоминания таблицы «с конца»
- 10. Пальцевый счет при запоминании таблицы умножения
- 11. Мнемонические приемы при заучивании таблицы умножения
- Лекция 11. Деление
- 1. Смысл действия деления
- 2. Табличное деление
- 3. Приемы запоминания таблицы деления
- 1. Прием, связанный со смыслом действия деления
- 2. Прием, связанный с правилом взаимосвязи компонентов умножения и деления
- Лекция 12. Особые случаи умножения и деления
- 1. Умножение и деление с 0 и 1
- 2. Внетабличное умножение и деление в пределах 100
- 2) Умножить число на первый множитель и результат умножить на второй множитель:
- 3) Умножить число на второй множитель и результат умножить на первый множитель:
- 1. Умножение и деление чисел, оканчивающихся нулем:
- 2. Прием умножения двузначного числа на однозначное: 23 • 4; 4-23
- 3. Прием деления двузначного числа на однозначное: 48:3; 48:2
- 4. Прием деления двузначного числа на двузначное: 68 :17
- 1) Если есть скобки, выполняю первым действие, записанное в скобках.
- 2) Выполняю по порядку умножение и деление.
- 3) Выполняю по порядку сложение и вычитание.
- 3. Деление с остатком
- 17 Карандашей разложили в три коробки поровну. Сколько карандашей в каждой коробке?
- 3. Найдите делимое в примерах:
- 4. Найдите делители в примерах:
- Лекция 13 Письменное умножение и деление
- 1. Умножение в столбик
- 2. Деление в столбик
- 100(Остаток)
- Лекция 14 Приемы рациональных вычислений в начальных классах
- 2. Длина
- 3. Масса и емкость
- 4. Площадь
- 1. Первый урок продолжается 45 мин, а перемена — 10 мин. Сколько минут проходит от начала первого урока и до начала второго?
- 2. В году 3 месяца летние: июнь, в котором 30 дней, июль и август, в которых по 31 дню. Сколько летних дней в году? Используя календарь, составь и реши похожие задачи про осень, зиму и весну.
- 6. Скорость
- 7. Действия с именованными числами
- 2. Геометрические понятия в начальной школе
- 3. Задания на измерение и вычисление
- 3. Начерти несколько ломаных из двух звеньев так, чтобы длина каждой ломаной была равна 11 см.
- 1. Измерь стороны треугольника омк(в миллиметрах) и узнай, на сколько миллиметров сумма длин отрезков оKи ом больше длины отрезка км.
- 2. Начерти отрезок ab длиной 60 мм. Отметь на нем точку с так, чтобы длина отрезка aс была равна 15 мм. Узнай длину отрезка св, не измеряя его.
- 3. Вычисли периметры многоугольников в сантиметрах.
- 3. Начерти два отрезка. Длина первого 8 см. Это в 2 раза больше длины второго отрезка. На сколько сантиметров длина первого отрезка больше длины второго?
- 4. Вырежи квадрат со стороной 8 см. Раздели его перегибанием на 4 равных треугольника и найди площадь каждого из них.
- 6. Найди диаметр большего круга, если радиус меньшего равен 1 см.
- 7. Начерти любую окружность. Проведи в ней два любых диаметра, соедини их концы отрезками и найди площадь полученного прямоугольника.
- 4. Задания на построение
- 1. Начерти в тетради ломаную, состоящую из четырех звеньев. Сколько вершин у этой ломаной?
- 2. Вырежи из приложения нужные фигуры и составь из них домик, кораблик, рыбку (по рисунку, данному в учебнике).
- 1. Проведи прямую, отметь на ней 3 точки. Сколько всего отрезков получилось?
- 2. Начерти и дополни до прямоугольника:
- 4. Сложи из треугольников нарисованные фигуры (по рисунку в учебнике).
- 1. Начерти два отрезка так, чтобы длина одного была в два раза больше длины данного отрезка, а длина другого — в 2 раза меньше длины данного.
- 2. Математическое выражение и его значение
- 3. Решение задач на основе составления уравнения
- 1. Запиши уравнения и реши их:
- 2. К какому числу надо прибавить частное чисел 240 и 3, чтобы получить 500?
- 2. Дроби (доли) в 3 классе
- 3. Дроби в 4 классе
- 2) Найдем, сколько сантиметров в четырех пятых долях отрезка:
- 4. Дроби величин
- 6 Листов составляют половину тетради. Сколько всего листов в тетради?
- 2. Подготовительная работа к обучению детей решению задач
- 3. Знакомство с простой задачей
- 4. Семантический анализ текста задачи
- Лекция 20. Методика обучения решению задач
- 1. Общие вопросы методики обучения решению задач
- 2. Методика работы с простыми задачами
- 3. Приемы знакомства с составной задачей
- 4. Задача в контексте урока
- Лекция 21. Использование приема моделирования при обучении решению задач
- 1. Моделирование как обобщенный прием работы над задачей
- 2. Приемы моделирования при обучении решению простых задач
- 3. Схематическое моделирование при обучении решению составных задач
- 4. Обучение детей использованию схемы в виде отрезков при решении задач
- 5. Моделирование при обучении решению задач на движение
- 6. Влияние графического моделирования на формирование умения решать задачи разными способами
- Глава 9 Методическая подготовка учителя к обучению математике в начальной школе Лекция 22. Подготовка учителя к уроку математики в начальных классах
- 1. Краткий анализ наиболее известных теорий обучения
- 2. Организация урока математики в начальных классах
- 3. Классификация учебных заданий
- 4. Деятельность педагога при планировании и проведении урока математики
- 5. Методический анализ урока математики в начальных классах
- Методика системного анализа и оценки эффективности проведенного урока
- 2. Сохранение и развитие математических способностей младшего школьника как методическая проблема
- 3. Проблема обучения математике в классах коррекционно-развивающего обучения (кро)
- Литература