logo search

3. Сложение и вычитание целых тысяч на основе правил арифметических действий

Учебник математики для 4 класса практически не предлагает вычислений соответствующего вида, однако учителя часто используют их на устном счете.

К этим случаям относятся вычисления вида: 70 200 + 400, 600 100 - 99, 3 008 + 351,425 100 - 24 100 и т. п.

При вычислениях используется знание десятичного состава многозначных чисел и понимание того, что во всех случаях действия затрагивают только часть первого числа (первое число может рассматриваться как сумма). Таким образом действия могут выполняться только с частью первого числа.

Например:

Вычисляя сумму 70 200 + 400, можно отдельно сложить 400 и 200, а затем их сумму прибавить к числу 70 000. Фактически используется правило прибавления числа к сумме.

При выполнении вычислений в случае 425 100 - 24 100 используется правило вычитания числа из суммы. 425 100 рассматривается, как сумма 400 000 и 25 100. Из одного из слагаемых вычитается 24 100 (25 100 - 24 100 = 1 000), и полученный результат складывается с первым слагаемым: 400 000 + 1 000 = 401 000.

В основе всех этих случаев лежит хорошее знание разрядного состава многозначных чисел и умение выполнять устные вычисления целыми разрядами.

Способы письменных вычислений столбик)

Письменные приемы сложения и вычитания являются основными вычислительными действиями при вычислениях в объеме многозначных чисел, поскольку вычисления в уме с многозначными числами представляют собой слишком сложную проблему для всех детей. Использование письменных алгоритмов вычислений в этих условиях является психологически и методически оправданным.

Усвоение детьми нумерации четырехзначных и многозначных чисел позволяет им осуществить перенос умения складывать и вычитать числа «столбиком» из области трехзначных чисел на область многозначных чисел.

При знакомстве с письменными приемами сложения и вычитания в объеме многозначных чисел проводится аналогия с алгоритмом письменного сложения и вычитания в пределах 1000:

1) Письменное сложение и вычитание любых многозначных чисел выполняется так же, как сложение и вычитание трехзначных чисел.

2) При записи столбиком, как и при сложении трехзначных чисел следует записывать разряд под соответствующим разрядом, и складывать сначала единицы, потом десятки, а потом сотни, потом тысячи и т. д. (справа налево).

Считается, что дети хорошо научены выполнять действия сложения и вычитания в столбик, поэтому в учебнике 4 класса не предусмотрено распределение случаев сложения и вычитания по уровням сложности.

Первыми рассматриваются различные случаи с переходами через разряд как при сложении так и при вычитании: 3 126 + 4 232; 25 346 - 13 407.

Затем рассматриваются случаи вычитания с нулями в уменьшаемом:

600 - 25; 1 000 - 124; 30 007 - 648.

Эти случаи являются наиболее сложными, поскольку требуют «заема» разрядных единиц не из соседних, а из далеко отстоящих разрядов. Эти случаи полезно сначала сопровождать подробной пояснительной записью на доске, чтобы дети понимали и видели, откуда появляются девятки в «пустых» разрядах.

Например:

30 007 Вычитаю единицы. Из 7 нельзя вычесть 8. 648 Пробую занять единицу в соседнем разряде.

В разряде десятков, сотен и тысяч нет разрядных единиц, поэтому «заем» возможно произвести только из разряда десятков тысяч: 30 тыс. - 1 тыс. = 29 тыс. Подписываем 29 над 30.

«Занятую» тысячу представляем в виде суммы 1 тыс. = 1000 = = 990 + 10.

Подписываем над разрядами сотен и десятков девятки, а из 10 единиц вычитаем 8, получаем 2 единицы. Но в разряде единиц было 7 единиц. Добавляем их к полученным 2 единицам и пишем в разряде единиц 9.

Вычитаем: 9 дес. - 4 дес. = 5 дес. Пишем 5 в разряде десятков. 9 сот. - 6 сот. = 3 сот. Пишем 3 в разряде сотен.

От десятков тысяч осталось 29 тыс. Пишем 9 в разряде тысяч, 2 — в разряде десятков тысяч.

При изучении сложения и вычитания многозначных чисел рекомендуется повторять и закреплять названия компонентов и результатов действий; свойства нахождения неизвестных компонентов действий при проверке результатов вычислений; рассматривать закономерности изменения суммы и разности при изменении одного из компонентов действий.

Многие дети используют калькуляторы как при выполнении вычислений с многозначными числами, так и при проверке результатов. В старших классах не возбраняется использовать калькуляторы при необходимости выполнить громоздкие вычисления (на уроках физики, химии, геометрии).

Чтобы стимулировать ребенка к использованию умения самостоятельно вычислять в столбик, следует предлагать задания, не позволяющие механического использования калькулятора для вычисления результата. Это различные задания на нахождение ошибки в записях или цифрах вычислений, на прикидку округленных результатов вычислений, на восстановление пропущенных цифр в компонентах действий, на выбор верных ответов из предложенных и т. п. Учителю следует помнить, что механический характер вычислительных действий при вычислениях с многозначными числами быстро приводит к утомлению детей, что провоцирует появление ошибок. Поэтому не стоит задавать подряд больше трех примеров на вычисления с многозначными числами.