logo search

1. Смысл действия умножения

Действие умножения рассматривается как суммирование одинаковых слагаемых.

По определению умножение целых неотрицательных чисел (натуральных) — это действие, выполняющееся по следующим правилам:

а b = a+ a+ a+ a+ a ...+ а, при b > 1

b слагаемых

а 1 = а, при b = 1

а0 = 0, при b = 0

Использование символики умножения позволяет сократить запись сложения одинаковых слагаемых.

Запись вида 2-4 = 8 подразумевает сокращение записи вида 2 + 2 + 2 + 2 = 8. Ее читают так: «по 2 взять 4 раза, получится 8»; или: «2 умножить на 4 получится 8».

Действие умножения во всех учебниках математики для начальных классов рассматривают ранее действия деления.

С теоретико-множественной точки зрения умножению соответствуют такие предметные действия с совокупностями (множествами, группами предметов) как объединение равных (равночисленных) совокупностей. Поэтому, прежде, чем знакомиться с символикой записи действий и вычислениями результатов действий, ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов учителя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.

Виды заданий, которые предлагаются детям до знакомства с символикой действия умножения (в 1 и 2 классе):

1. Посчитай двойками (тройками, пятерками).

2. Нарисуй рисунок: «На трех тарелках по 2 апельсина». Сосчитай, сколько всего апельсинов.

3. Найди лишнюю запись:

2 + 2

2 + 2 + 2

2+2+2+2

2+3+2+2+2

Найди значение каждого выражения наиболее удобным способом.

4. Сделай запись выражения по рисунку:

Виды заданий, используемых для усвоения ребенком смысла умножения при знакомстве с этим действием:

а) На соотнесение рисунка и математической записи:

Рассмотри рисунок и объясни записи:

2 + 2 + 2 + 2 + 2 = 10и2.5 = 10 5 + 5= 10и5-2= 10

4 + 4 + 4 = 12 4-3=12

б) На нахождение суммы одинаковых слагаемых: Рассмотри рисунки и закончи записи:

6+6+6=.

6-3 = .

в) На замену сложения умножением:

Замени, где возможно сложение умножением и вычисли результаты:

5+5+5+5 1+1+1+1+1 5+6+3

42 + 42 0 + 0+0 + 0 + 0 4 + 6 + 8

г) На понимание смысла определения действия умножения:

Рассмотри записи и объясни, какое число берется слагаемым и сколько раз берется слагаемым это число: 6-4 = 24 9-3 = ...

6 + 6 + 6 + 6 = 24 9 + 9 + 9 =...

Выражение вида 3 • 5 называют произведением. Числа 3 и 5 в этой записи называют сомножителями (множителями).

Запись вида 3 • 5 = 15 называют равенством. Число 15 называют значением выражения. Поскольку число 15 в данном случае получено в результате умножения, его также часто называют произведением.

Например:

Найдите произведение чисел 4 и 6. (Произведение чисел 4 и 6 — это 24.)

Поскольку названия компонентов действия умножения вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.

Например:

1. Среди данных выражений найдите такие, в которых первый множитель равен 3 (второй множитель равен 2 и т. д.):

2-2 7-3 6-2 1.6 3-5 3-2 7-3 3-4 3-1

2. Составьте произведение, в котором второй множитель равен 5. Найдите его значение.

3. Выберите примеры, в которых произведение равно 6. Подчеркните их красным цветом. Выберите примеры, в которых произведение равно 12. Подчеркните их синим цветом.

7-3 6-1 2-2 2-3 6-2 3-2 2-6

4. Как называют число 4 в выражении 5 • 4? Как называют число 5? Найдите произведение. Составьте пример, в котором произведение равно тому же числу, а множители другие.

5. Множители 8 и 2. Найдите произведение.

В третьем классе дети знакомятся с правилом взаимосвязи компонентов умножения, которое является основой для обучения нахождению неизвестных компонентов умножения при решении уравнений:

Если произведение разделить на один множитель, то получится другой множитель.

Например:

Решите уравнение 6 * х = 24. уравнении неизвестен множитель. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель. х= 24:6, х = 4.)

Однако, данное правило в учебнике математики 3 класса не является обобщением представлений ребенка о способах проверки действия умножения. Правило проверки результатов умножения рассматривается в учебнике намного позже — после знакомства с вне-табличным умножением и делением (знакомства с умножением и делением двузначных чисел на однозначные, не входящим в таблицу умножения и деления). Это объясняется тем, что правило взаимосвязи компонентов умножения является основой составления таблицы деления. Поскольку предполагается, что табличные случаи умножения ребенок к этому времени знает наизусть, то нет необходимости в проверке результатов. Есть только необходимость быстро восстанавливать (вспоминать) нужное третье число по двум данным.

Например:

Вычисли

9-2 = ... 5-4 = ... 1*7 = ...

18:2 = ... 20:4 = ... 7:7 = ...

При выполнении устного внетабличного умножения, требующего применения достаточно сложного алгоритма, необходима проверка, поскольку многие дети часто ошибаются в этих случаях.

Правило проверки действия умножения: