logo search

3. Вычисли периметры многоугольников в сантиметрах.

Выполнение:

Длины сторон фигур ребенок измеряет линейкой и вычисляет периметр (сумму длин сторон). У четырехугольника противолежащие стороны равны, поэтому можно, выяснив это с помощью циркуля, вычислять его периметр рациональным способом: найти сумму двух рядом лежащих сторон, а затем умножить это число на 2. У пятиугольника все стороны равной длины. Выяснив это с помощью циркуля, можно измерить одну сторону, а затем умножить ее длину на 5.

4. Чему равна сторона квадрата, если его периметр равен периметру прямоугольника со сторонами 5 см и 3 см?

Выполнение:

Вычисляется периметр прямоугольника: (5 см + 3 см) • 2 = 16 см. Этот периметр равен периметру квадрата. Поскольку у квадрата все стороны равны, значит, сторона квадрата равна: 16 см: 4 см = 4 см.

5. Начерти два отрезка так, чтобы длина одного была 4 см, а длина другого — в 2 раза больше. Обозначь отрезки буквами и узнай, на сколько сантиметров один из них меньше другого.

Выполнение:

Вычерчивается отрезок длиной 4 см. Длина другого 4 см • 2 = 8 см. Разницу длин находят вычислением 8 см - 4 см = 4 см.

6. Вычисли площадь прямоугольника, длины сторон которого 9 см и 2 см.

Выполнение:

Площадь прямоугольника находится как произведение длин сторон. Значит 9 см • 2 см = 18 см2.

7. Найди длину стороны квадрата ABCD, периметр которого 8 см. Начерти его и вычисли площадь.

Выполнение:

Периметр квадрата — это сумма длин всех его сторон, значит одна сторона квадрата 8 см : 4 = 2 см (поскольку стороны квадрата имеют равные длины). Площадь квадрата — это произведение длин его сторон: 2 см • 2 см = 4 см2.

8. Измерь радиус данной окружности и начерти окружность такого же радиуса.

Выполнение:

Проводим радиус окружности, соединяя центр с любой точкой окружности. Измеряем ее циркулем и вычерчиваем окружность такого же радиуса.

9. Начерти три отрезка: длина первого отрезка 8 см, длина второго составляет одну четвертую длины первого, а длина третьего на 6 см больше длины второго.

Выполнение:

Первый отрезок вычерчивается по заданной длине. Длина второго сначала вычисляется: 8 см : 4 = 2 см. Длина третьего отрезка также сначала вычисляется: 2 см + 6 см = 8 см.

10. Начерти квадрат, площадь которого равна площади прямоугольника со сторонами 2 см и 8 см. Найди периметр этого квадрата.

Выполнение:

1. Вычислим площадь прямоугольника: 2 см • 8 см = 16 см2.

2. Эта площадь равна площади квадрата. Площадь квадрата равна произведению длин его сторон, значит, нужно подобрать число, произведение которого на само себя равно 16 — это число 4. Длина стороны квадрата 4 см. Периметр квадрата 4 см • 4 = 16 см.

11. Периметр равностороннего треугольника 24 см. Чему равна длина каждой его стороны?

Выполнение:

Равносторонний треугольник имеет стороны равной длины, значит 24 см : 3 = 8 см — длина стороны треугольника.

12. Из трех одинаковых квадратов составили прямоугольник. Узнай периметр этого прямоугольника, если сторона каждого квадрата равна 16 мм.

Узнай сторону квадрата, периметр которого равен периметру этого прямоугольника.

Выполнение:

Для решения этой задачи удобно выполнить рабочий рисунок (примерный):

Анализ рисунка показывает, что для нахождения периметра прямоугольника нужно 16 мм • 8 = 128 мм.

Если считать это число периметром квадрата, можно определить длину его стороны: 128 мм : 4 = 32 мм.

4 класс

1. Начерти луч с началом в точке К. Отложи на нем от его начала один за другим несколько отрезков длиной по 15 мм. Отметь на луче точки А, В, С, соответствующие числам 4, 6, 8. Найди длины отрезков КА, KB, АС, ВС.

Выполнение:

Выполнять задание следует по чертежу:

По рисунку определяем длины отрезков:

КА — 4 единицы по 15 мм, КА = 15 мм • 4 = 60 мм.

KB — 6 единиц по 15 мм, KB = 15 мм • 6 = 90 мм.

АС — 4 единицы по 15 мм, АС = 15 мм • 4 = 60 мм.

ВС — 2 единицы по 15 мм, ВС = 15 мм • 2 = 30 мм.

2. Рассмотри чертеж и объясни, как найти площадь треугольника ACD.

Выполнение:

Треугольник ACD состоит из двух треугольников: ADK и АСК

Треугольник ADK составляет половину квадрата DMAK, значит, его площадь равна половине этого квадрата.

Треугольник АСК составляет половину прямоугольника АВСК, значит, его площадь равна половине площади этого прямоугольника.

Можно заметить, что квадрат DMAK и прямоугольник АВСК составляют вместе прямоугольник DMBC, значит, площадь искомого треугольника Л CD составляет половину площади прямоугольника DMBC

Измеряем длины сторон прямоугольника DMBC, находим его площадь как произведение длин сторон, и делим полученное число пополам.