Логико-математическое и художественно-эстетическое развитие дошкольников
Взаимосвязь логико-математического и художественно-эстетического содержания (изобразительной деятельности) проявляется в нескольких моментах: единство использования некоторых сенсорных эталонов (форма) и категорий (размер, пропорции, пространственные отношения и т. п.), которые в разных аспектах рассматриваются в данных разделах и освоение которых принципиально для обоих направлений; важность некоторых общих законов (например, «законов симметрии и асимметрии», передача трехмерного мира средствами рисунка и конструирования, как для математического, так и художественно-эстетического развития детей (С. В. Аранова «Обучение изобразительному искусству. Интеграция художественного и логического», 2004)).
Относительно музыкальной деятельности общность состоит в использовании временных интервалов, освоении таких категорий, как длительность, последовательность, продолжительность, темп, ритм, скорость, высота звука и т. п.; использовании счета для определения количества движений, отсчитывания ритма и т. п.
Вариантом интеграции художественно-эстетического и математического содержания может являться организация следующих видов деятельности.
• Проектная деятельность по теме «Математика в искусстве» (с обсуждением правил симметрии и асимметрии в искусстве и математике; передачи формы, пространства в произведениях искусства; многообразия форм в окружающем мире и способов их передачи в рисунке, лепной работе; способов передачи перспективы, отражения и т. п.). Более частными вариантами таких проектов могут являться темы «Путешествие Линии и Точки в стране искусства и математики» (предусматривает изучение различных видов линий, образование форм и использование линии (рисунка) в создании художественного образа для передачи настроения, отношения и т. п.); «Загадочная Форма» (в искусстве и математике), «Где же спряталось Пространство?» (в математике и искусстве) и т. п. При реализации данного направления следует учитывать принцип этичности в трактовке художественных образов и избегать ситуации «разрушения» целостного впечатления от произведения искусства (которое может произойти в результате привнесения логико-математической информации). • Коллективная игра-конструирование по теме «Город» (варианты: «Улица», «Музей» и т. п.), предполагающая совместное обсуждение с детьми макета построения города и обыгрывание результата. Придумывание макета Красивого города (составление плана города, рисование схемы), планирование улиц, домов; создание схем постройки различных зданий с учетом функционального назначения и эстетических показателей; определение размеров домов, длин улиц. В процессе конструирования внимание детей направляется на размерные свойства, форму, проявление симметрии или асимметрии и т. п. В дальнейшем возможно составление карты уже построенного города с условным обозначением символами достопримечательностей (т. е. осуществление операции кодирования).
Логико-математическое и социально-личностное развитие дошкольников
В ряде исследований намечены пути интеграции логико-математического и социально-личностного развития дошкольников (Л. М. Кларина). Социальный мир является интересным и активно познаваемым детьми объектом. В связи с этим Н. Н. Поддьяков отмечал так называемое «социальное экспериментирование», свойственное дошкольникам. Ребенок пытается выявить и познать социальные отношения, определить свое место в системе данных отношений, познать себя как часть мира.
В данном аспекте пониманию собственной уникальности, индивидуальности способствует, наряду с другими показателями, знание ребенком своих возможностей и особенностей. Не случайно старшие дошкольники любят определять, кто выше в группе (кто быстрее пробежал дистанцию, дальше бросил мяч), какого роста они были раньше; рассматривать одежду, в которой ходили они в раннем возрасте; в доказательство того, что они уже выросли (стали старше), — демонстрировать короткие рукава рубашки и т. п. Для обогащения опыта познания своих возможностей в группе детского сада необходимо наличие ростомера, весов, часов, показания которых обсуждаются с детьми.
Вариантом такой интеграции в сочетании с тематическим принципом является также организация освоения детьми содержания по темам социальной направленности, в которых обогащается логико-математический опыт. Например, тема «Мы в детском саду» предусматривает освоение детьми нескольких разделов («Кто такие „мы"», «Наши дома, снаружи и изнутри», «Правила, действующие в детском саду и семье»), в содержании которых интегрированы три направления: социальное, естественнонаучное и логико-математическое. В логико-математическом аспекте предусматривается освоение временных и количественных характеристик и зависимостей (количество родственников, возраст членов семьи, различия в росте детей и родителей, изменения во времени и т. п.), логических связей, отношений и зависимостей; различных средств и способов познания (эталонов, моделей, цифр и т. п.). Проводится обсуждение того, как меняются со временем сам ребенок, его близкие, домашние растения и животные; кто в семье старший (младший); организуется решение и составление арифметических и логических задач, в сюжетах которых используются факты из жизни семьи (обобщение родители — дети, родственники, сестры — братья и т. п.). Используются рассматривание фотографий, иллюстраций, построение родословного дерева (своеобразного аналога модели «классификационного дерева»), построение плана детской комнаты и т. п.
Интерес представляет также обогащение и применение детского математического опыта в решении проблемных ситуаций и ситуаций нравственной направленности, возникающих в семье и в группе детского сада. Например, как поровну разделить угощение (торт) между шестью гостями; два разных по размеру яблока — между двумя детьми; три конфеты — между двумя сестрами и т.п.; рассадить всех вокруг стола, чтобы всем было удобно; набрать необходимое количество воды для заваривания чая (для определенного числа приглашенных). В данных ситуациях необходимость поиска приемлемого решения активизируется именно нравственными моментами (не обидеть, помочь, сделать «по справедливости» и т. п.): они стимулируют применение математических представлений и умений и показывают необходимость их освоения.
Резюме
®* Для современных подходов к процессу логико-математического развития дошкольников характерно использование идей интеграции как на уровне объединения содержательных разделов, так и на уровне установления связей между различными направлениями развития детей.
Использование идей интеграции обеспечивает развитие более обобщенных и системных математических представлений и умений.
Реализация интеграции возможна за счет объединения (взаимообогащения) некоторых содержательных разделов; использования специально разработанных на данных идеях пособий; конструирования форм организации детской деятельности; применения методов и приемов, ориентированных на интегративный подход.
Литература
Аранова С. В. Обучение изобразительному искусству. Интеграция художественного и логического. — СПб.: Каро, 2004.
Доронова Т. Н., Гербова В. В., Гризик Т. И. и др. Радуга: программа и руководство для воспитателей средней группы детского сада. — М.: Просвещение, 1994.
Кларина Л. М. Проблема выбора образовательной программы и ее реализации в детском саду // Готовимся к аттестации. Методическое пособие для педагогов ДОУ. — СПб.: ДЕТСТВО-ПРЕСС, 2005.
Кларина Л. М., Михайлова 3. А. Особенности организации образовательного процесса по теме «Мы в детском саду и дома» // Методические советы к программе «Детство». — СПб.: ДЕТСТВО-ПРЕСС, 2007.
Мир экономики глазами ребенка (на материале рукотворного мира: План-программа по экономическому воспитанию стар ших дошкольников / Дыбина О. В., Сидякина Е. А., Паленова Н. П., Кузнецова Н. Г. Под ред. О. В. Дыбиной.— Тольятти, 2000.
Радуга: Программа и методические рекомендации по воспитанию, развитию и образования детей 5—6 лет в детском саду / Сост. Т. Н. Доронова.— М.: Просвещение, 1996.
Серова 3. А. Знакомлюсь с математикой. Пособие для подготовки детей к школе. — СПб.: Питер, 2000.
Смоленцева А. А. Введение в мир экономики, или Как мы играем в экономику. - СПб.: ДЕТСТВО-ПРЕСС, 2005.
Смоленцева А. А. Сюжетно-дидактическая игра с математическим содержанием.— М.: Просвещение, 1993.
Соловьева Е. В. Математика и логика для дошкольников. Методические рекомендации к программе «Радуга». — М., 2001.
Шатова А. А. Дошкольник и... Экономика: Программа.— М., 1996.
Вопросы и задания для самоконтроля
© Сформулируйте основные идеи интеграции логико-математического и других направлений развития дошкольников.
© Дайте обоснование преимуществ и возможных недостатков интегрированного подхода к логико-математическому развитию дошкольников.
© Сконструируйте схему-конспект вида детской деятельности с использованием идей интеграции.
И--465
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников