logo
Михайлова З

Отношения между двумя множествами

С целью уточнения вернемся к вопросу об отношении вклю­чения одного множества в другое.

Вообще говоря, в математике различаются два вида включе­ния: в широком смысле (нестрогое включение) и в узком смысле (строгое включение). Первое обозначается знаком с. Запись «AczB» означает, что все элементы Л принадлежат В. При этом воз­можны два случая:

  1. все элементы В принадлежат А, т. е. AczB и ВсА. В этом слу­чае множества An В состоят из одних и тех же элементов и назы­ваются равными, что обозначается так: «А=В». Например, если А — множество всех больших блоков, а В — множество всех бло­ков, которые не являются малыми, то А=В. Как видно, равные множества по существу совпадают (при задании их перечислени­ем элементов они могут отличаться лишь порядком перечисления, который несуществен);

  2. не все элементы В принадлежат А, т. е. AciB, но BczA. В таком случае говорят также, что А строго включается в В — или А является собственной (или правильной) частью В. Это отношение в матема­тической литературе обычно обозначается символом «с» {A(zB).

В предматематической подготовке дошкольников встречается лишь строгое включение, собственная часть множества.

В играх с обручами моделируются и другие отношения, в кото­рых могут находиться два множества. Так, например, множества красных (А) и не красных (Л) блоков не имеют ни одного общего элемента, т. е. их пересечение пусто (АглА = 0). Такие два множест­ва, как мы уже знаем, называются непересекающимися (в литературе встречается и термин «дизъюнктные» множества). Множества красных (А) и квадратных (В) блоков имеют общие элементы (крас­ные квадраты), т. е. их пересечение непусто (АглВф0), причем ни одно из этих множеств не включается в другое, т. е. не является подмножеством другого. Такие два множества называются пересе­кающимися.

Выявление правильных отношений между множествами окру­жающих нас предметов — составная часть формирования и разви­тия представлений дошкольников об окружающем мире. Выработ­ка у дошкольников простейших представлений классификации ок­ружающих предметов является основой для формирования в дальнейшем математического мышления, связанного с моделиро­ванием и исследованием различных математических конструкций, способствует повышению алгоритмической культуры учащихся.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4