logo
Михайлова З

Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста

На длительный и сложный процесс развития методики обуче­ния детей дошкольного возраста математике оказывал влияние передовой опыт практической деятельности воспитателей малень­ких детей, учителей начальных школ, педагогов семейного воспи­тания, результаты опытно-экспериментальной деятельности, на­учные исследования и др. Становление методики развития элемен­тарных математических представлений в XIX — начале XX вв. про­исходило также под непосредственным воздействием идей реформирования школьных методов обучения арифметике. Особо выделились два направления: с одним из них связан так называе­мый метод изучения чисел, или монографический метод, а с дру­гим — метод изучения действий, который назвали вычислительным.

Согласно методу изучения чисел, в разработке немецкого ме­тодиста А. В. Грубе преподавание арифметики осуществлялось «от числа к числу». Каждое из чисел, якобы доступное «непосредст­венному созерцанию», сравнивалось с каждым из предыдущих чисел путем установления между ними разностного и кратного от­ношения. Действия как бы сами вытекали из знания наизусть со­става чисел. Монографический метод получил определение мето­да, описывающего число.

В процессе изучения каждого числа материалом для счета слу­жили пальцы рук, штрихи на доске или в тетради, палочки. На­пример, при изучении числа 6 предлагалось разложить палочки по одной. Задавались вопросы: «Из какого количества палочек соста­вилось число?», «Отсчитайте по одной палочке, чтобы получилось шесть. Во сколько раз шесть больше одного?», «Какую часть шести составляет одна палочка?», «Сколько раз одна палочка за­ключается в шести?» и т. д. Потом изучаемое число точно так же сравнивалось с числом 2, предлагалось разложить шесть палочек по две и отвечать на вопросы: «Сколько двоек в шести?», «Сколько раз число два содержится в шести?» и т. д. Таким же образом дан­ное число сравнивалось со всеми предшествующими (3, 4, 5). После каждой группы таких упражнений действия записывались в виде таблицы, результаты которой заучивались наизусть, с тем чтобы в дальнейшем производить арифметические действия по памяти, не прибегая к вычислениям.

В 90-х гг. XIX в. под влиянием критики монографический метод обучения арифметике был несколько видоизменен немец­ким дидактом и психологом В. А. Лаем. Книга В. А. Лая «Руко­водство к первоначальному обучению арифметике, основанное на результатах дидактических опытов» была переведена на рус­ский язык.

Как же происходило обучение по Лаю? В. А. Лай считал, что чем отчетливее, яснее и живее наблюдение вещей, тем отчетливее, яснее и живее возникают числовые представления. Детям показы­вали числовую фигуру. Например, фигура, обозначающая число 4, выглядела так: один круг — в левом верхнем углу, второй — в левом нижнем углу, третий — в правом верхнем углу и четвертый — в пра­вом нижнем углу. Дети рассматривали фигуру, а затем описывали с закрытыми глазами расположение точек. За описанием следовала зарисовка данной числовой фигуры и составление ее на счетах.

После создания образа числа на основе восприятия дети пере­ходили к изучению способов его получения. Например, педагог за­крывал три круга из четырех (дети воспринимали один верхний левый), затем он закрывал и этот круг, а первые три открывал. Затем он закрывал два верхних круга, потом — два нижних и т. п. Резуль­таты каждого действия описывались и объяснялись: один да три — это четыре; три и один — это четыре; два и два будет четыре. После этого на изученный состав числа 4 решались задачи.

По этому методу дети воспринимали и запоминали числа, предлагаемые им в виде квадратных числовых фигур.1 Последова­тельность обучения по видоизмененному монографическому ме­тоду состояла в следующем: а) описание, наблюдение и составле­ние очередной числовой фигуры; б) запоминание состава числа; в) упражнения в арифметических действиях.

Однако уже в 70-х гг. XIX в. стали появляться противники мо­нографического метода. Недовольство методом нарастало, и в 80—90-х гг. русские математики выступили с его резкой критикой, противопоставляя ему метод изучения действий, или, иначе, вы­числительный метод.

1 Рисунки числовых фигур представлены в хрестоматии к данному учебному пособию: (Теории и технологии математического развития детей дошкольного возраста».

Несмотря на критику монографического метода, непризнание его в русских школах, поклонник этого метода Д. Л. Волковский издал книгу «Детский мир в числах» (1912). Книга иллюстрирова­лась числовыми фигурами В. А. Лая, карточками и чертежами.

Она была предназначена не только для начальной школы, но и для приготовительных классов женских гимназий, детских садов и до­машнего обучения. Таким образом, монографический метод про­ник в детский сад и получил там широкое распространение, по нему сравнительно долго строилось обучение детей счету.

В одном из научных исследований того времени (см.: К. Ф. Ле-бединцев «Развитие числовых представлений в раннем детстве».— Киев, 1923) автор, основываясь на наблюдениях за детьми, утверж­дает, что первые числовые представления ребенка — результат «це­лостного» восприятия им множеств, различения групп предметов (до 4—5). Освоение умений сосчитывать эти небольшие совокуп­ности признавалось необязательным, а численность групп из более чем 5 элементов устанавливалась с помощью счета.

Другой метод — метод изучения действий (вычислительный) — предполагал обучение детей вычислениям и пониманию смысла арифметических действий. Обучение при этом строилось по деся­тичным концентрам. В пределах каждого концентра изучались не отдельные числа, а счет и действия с числами.

Оба метода (и монографический, и вычислительный) сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приемы, упражнения, дидактические средства одного и другого методов.