2.5. Величины и их измерение
Что такое величина
Величина — одно из основных математических понятий, возникшее в древности и подвергшееся в процессе длительного развития ряду обобщений.
Общее понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объема, массы, скорости и т. п. Каждый конкретный род величин связан с определенным способом сравнения соответствующих свойств объектов. Например, в геометрии отрезки сравниваются при помощи наложения, и это сравнение приводит к понятию длины: два отрезка имеют одну и ту же длину, если при наложении они совпадают; если же один отрезок накладывается на часть другого не покрывая целиком, то длина первого меньше длины второго. Общеизвестны более сложные приемы, необходимые для сравнения площадей плоских фигур, объемов пространственных тел.
Для сравнения двух предметов по массе их взвешивают. Если чаши весов уравновешиваются, то предметы имеют одинаковую массу, если же чаши не уравновешены, то предмет, находящийся на той чаше, которая перетягивает, имеет большую массу, второй предмет — меньшую.
Понятия длины, площади, объема, массы могут быть обобщены на любой род величин: в системе всех однородных величин, т. е. всех длин, всех площадей, всех объемов, всех масс и т. д., устанавливается отношение порядка. Две величины а и Ь одного и того же рода или совпадают (а=Ь), или первая меньше второй (а<Ь), или вторая меньше первой (Ь<а).
Однородные величины можно также складывать. Например, если точка В лежит между точками А и С, то длина отрезка АС равна сумме длин отрезков АВ и ВС (илл. 16, А).
Если плоская фигура состоит из двух частей, не имеющих других общих точек, кроме граничных, то площадь S всей фигуры равна сумме площадей S1+S2 этих частей (илл. 16, Б).
Если предмет состоит из двух частей, то его масса т равна сумме m\+ni2 масс т\ыгп2 этих частей.
Так раскрывается смысл операции сложения для каждого рода величин (длин, площадей, объемов, масс и т.д.).
Исходя из смысла отношения меньше (<) и операции сложения однородных величин (+), можно убедиться в том, что любая система однородных величин (В, <, +) обладает перечисленными ниже свойствами.
Отношение < является, как и между числами, антирефлексивным, т. е. -i(o<a) для любого ае В; асимметричным (для любых а, аеВ, если а<Ь, то -*Ь<а) и транзитивным (для любых а, Ь, се В, если а<Ь и Ь<с, то а<с), т. е. является отношением строгого порядка. Причем для любых а, Ь, се В, если а*Ь, то а<Ь или Ь<а, т. е. система однородных величин В упорядочена этим отношением.
Если а<Ь, то существует величина се В такая, что а+с=Ь. Величина с называется разностью между величинами b и а и обозначается «b—а», т. е. а+с=Ь равносильно с—Ъ—а. Например, если взять два отрезка, АВ длины а и CD длины Ъ, причем а<Ь, и отложить на отрезке CD отрезок СВ[, равный АВ, то образовавшийся отрезок B\D будет иметь длину c—b-а (илл. 17).
3) Сложение величин, как и сложение чисел, обладает свойством переместительности (коммутативности): a+b=b+a для любых я, be В.
Например, безразлично — присоединить к отрезку АВ длины а отрезок ВС длины b или наоборот — мы все равно получим в результате один и тот же отрезок.
4) Сложение величин обладает свойством сочетательности (ассоциативности):
a+(b+c)=(a+b)+c для любых а, Ь, се В.
Например, если присоединить к отрезку АВ длины а отрезок BD длины Ь+с так, чтобы точка В лежала между точками А и D (илл. 18), то получим отрезок AD длины а+ф+с); если к отрезку АС длины а+b присоединить отрезок CD длины с, то получим отрезок AD, длина которого выражается через (а+Ь)+с; но так как мы получили один и тот же отрезок AD, то a+(b+c)=(a+b)+c. Поэтому можно писать без скобок а+Ь+с.
Илл. 18
5) Для любых a, be В, а+Ь>а (свойство монотонности сложения). Например, если точка Я лежит между точками А и С (илл. 18), то длина отрезка АС (а+b) больше длины отрезка АВ (а), или вообще «величина части меньше величины целого».
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников