Увеличение и уменьшение чисел. Решение практических задач
Задачи на увеличение (уменьшение) числа на один в процессе непосредственного практического действия доступны пониманию детьми четвертого года жизни. Е. И. Тихеева советовала решать «бытовые» задачи с детьми этого возраста. Педагог обращает внимание детей на увеличение количества игрушек, материалов и просит выразить в действии и речи изменение: чего стало больше (меньше), на сколько, сколько всего и т. д.
В старшем дошкольном возрасте (5—6 лет) арифметические задачи (на сложение и вычитание) используются с целью подведения детей к простым вычислениям, практикования в применении знаний о составе чисел из двух меньших чисел при выполнении действий сложения и вычитания. Условия задач, как правило, отражают содержание игровых и бытовых ситуаций детской жизни. Решить задачу означает понять связи, которые даны в условии (содержательные и числовые), а также связи между данными задачи и искомым. Понимание этих связей определяет выбор арифметического действия.
Установив эти связи, ребенок довольно легко приходит к пониманию смысла арифметических действий и значений понятий прибавить, вычесть, получится, останется. Решая задачи, дети овладевают умением находить зависимости величин.
Вместе с тем задачи являются одним из средств развития у детей логического мышления, смекалки, сообразительности. В работе с задачами совершенствуются умения проводить анализ и синтез, обобщать и конкретизировать, раскрывать основное, выделять главное в тексте задачи и отбрасывать несущественное, второстепенное.
Дошкольникам свойственно своеобразное понимание сущности арифметической задачи, отраженное как в специальной литературе, так и в художественной. В педагогике этот вопрос изучался А. М. Леушиной, Е. А. Тархановой, Н. И. Непомнящей, Л. П. Клюевой и др. Детям свойственно понимать задачу как рассказ, историю, загадку, ситуацию и игнорировать числовые данные. Текст задачи дети трактуют произвольно, преобразуют его по своему усмотрению. Часто вопрос задачи заменяют ответом-решением.
Е. А. Тарханова выяснила, что дети понимают сущность арифметического действия по ассоциации его с жизненным: прибавили — прибежали, отняли — улетели и др. Они не осознают еще математических связей между компонентами и результатом того или иного действия.
Даже в тех случаях, когда дети формулировали арифметическое действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т. е. не осознали отношений между компонентами арифметического действия как единства отношений целого и его частей. Поэтому и решали задачу привычным способом счета, не прибегая к рассуждению о связях и отношениях между компонентами.
Детям дошкольного возраста (5—6 лет) предлагаются для решения только простые задачи, решаемые одним действием сложения или вычитания.
В зависимости от используемого для составления задач наглядного материала они делятся на задачи-драматизации и задачи-иллюстрации. Эти задачи помогают ребенку определить тема тику, сюжет, отношения между числами и перейти к самостоятельному составлению задач.
В задачах-драматизациях наиболее наглядно раскрывается их смысл. Задачи этого вида особенно ценны на первом этапе обучения: дети учатся составлять задачи про самих себя, рассказывать о действиях друг друга, ставить вопрос для решения, поэтому структура задачи на примере задач-драматизаций наиболее доступна детям.
Особое место в системе наглядных пособий занимают задачи-иллюстрации. Если в задачах-драматизациях все предопределено, то в задачах-иллюстрациях при помощи игрушек создается простор для разнообразия сюжетов (в них ограничиваются лишь тематика и числовые данные).
Для иллюстрации задач широко применяются различные картинки. Основные требования к ним: простота сюжета, динамизм содержания и ярко выраженные количественные отношения между объектами. На одних из них все предопределено: и тема, и содержание, и числовые данные. Например, на картинке нарисованы три легковых и одна грузовая машина. С этими данными можно составить 1 или 2 варианта задач.
Но задачи-картинки могут иметь и более динамичную направленность. Например, можно взять картину-панно, на которой изображены озеро и берег; на берегу нарисован лес. На изображении озера, берега и леса сделаны надрезы, в которые можно вставить небольшие контурные изображения разных предметов. Тематика и здесь предопределена, но числовые данные и содержание задачи можно в известной степени варьировать (утки плавают, выходят на берег и др.).
Методические приемы в обучении решению арифметических задач
Обучение дошкольников решению арифметических задач проходит через ряд взаимосвязанных между собой этапов.
Первый этап — подготовительный. Основная цель этого этапа — организовать систему упражнений по выполнению операций над множествами. Так, подготовкой к решению задач на сложение являются упражнения по объединению множеств. Упражнения на выделение части множества проводятся для подготовки детей к решению задач на вычитание. С помощью операций над множествами раскрывается отношение часть — целое, доводится до понимания смысл выражений больше на, меньше на.
Учитывая особенности мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Воспитатель предлагает детям отсчитать и положить на карточку шесть грибов, а затем добавить еще два гриба. Дети выполняют задание, и воспитатель спрашивает: «Сколько всего стало грибов? (Дети считают.) Почему их стало восемь? На сколько грибов стало больше?» Подобные упражнения проводятся и на выделение части множества. В качестве наглядной основы для понимания детьми отношений между частями и целым могут применяться диаграммы Эйлера—Венна, в которых эти отношения изображаются графически.
На втором этапе нужно упражнять детей в составлении задач и подводить к усвоению их структуры. Дети осваивают умения устанавливать связи между данными и искомым и на этой основе выбирать для решения необходимое арифметическое действие; понимать вопрос «Что нужно узнать?»
На этом этапе составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учитывать, чтобы не затруднять детей поиском способов решения задачи. Прибавить или вычесть число 1 они могут на основе имеющихся у них знаний об образовании следующего или предыдущего числа. Например, воспитатель просит ребенка принести и поставить в стакан семь флажков, а в другой — один флажок. Эти действия и будут содержанием задачи, которую составляет воспитатель. Текст задачи произносится так, чтобы были четко названы условие, вопрос и числовые данные.
При обучении дошкольников составлению арифметической задачи важно показать, чем она отличается от рассказа, загадки, логической задачи.
Например, чтобы показать отличие задачи от рассказа и подчеркнуть значение чисел и вопроса задачи, воспитателю следует предложить детям рассказ, похожий на задачу. В рассуждениях по содержанию рассказа отмечается, чем отличается рассказ от задачи.
Чтобы научить детей отличать задачу от загадки, воспитатель подбирает такую загадку, где имеются числовые данные. Например: «Два кольца, два конца, а посередине — гвоздик». «Что это?» — спрашивает воспитатель.
В дальнейшем, упражняя детей в составлении задач, нужно особо подчеркнуть необходимость числовых данных. Например, воспитатель предлагает следующий текст задачи: «Лене я дала гусей и уток. Сколько птиц я дала Лене?» В процессе обсуждения этого текста выясняется, что такую задачу решить нельзя, так как не указано, сколько было дано гусей и сколько — уток. Лена сама составляет задачу, предлагая детям решить ее: «Мария Петровна дала мне восемь уток и одного гуся. Сколько птиц дала мне Мария Петровна?» «Всего девять птиц», — говорят дети.
Чтобы убедить детей в необходимости наличия не менее двух чисел в задаче, воспитатель намеренно опускает одно из числовых данных: «Сережа держал в руках четыре воздушных шарика, часть из них улетела. Сколько шариков осталось у Сережи?» Дети приходят к выводу, что такую задачу решить невозможно, так как в ней не указано, сколько шариков улетело. Воспитатель соглашается с ними: действительно, в задаче не названо второе число, а в задаче всегда должно быть два числа. Задача повторяется в измененном виде: «Сережа держал в руках четыре шарика, один из них улетел. Сколько шариков осталось у Сережи?»
На конкретных примерах из жизни дети яснее осознают необходимость иметь два числа в условии задачи, усваивают отношения между величинами, начинают различать известные данные в задаче и искомое неизвестное.
Упражнять детей в умении высказываться по поводу арифметического действия сложения или вычитания — задача третьего этапа.
Дошкольники без затруднения находят ответ на вопрос задачи, исходя из последовательности чисел, связей и отношений между ними. Теперь же требуется выделить действия сложения и вычитания, раскрыть их смысл, «записать» их с помощью цифр и знаков в виде числового примера.
Прежде всего надо предложить детям составить задачи на нахождение суммы по двум слагаемым. «Мальчик поймал пять карасей и одного окуня», — говорит Саша. «Сколько рыбок поймал мальчик?» — формулирует вопрос Коля. Воспитатель предлагает детям ответить на вопрос. Выслушав ответы нескольких детей, он задает им новый вопрос: «Как вы узнали, что мальчик поймал шесть рыбок?» Дети отвечают, как правило, по-разному: «Увидели», «Сосчитали», «Мы знаем, что пять да один будет шесть» и т.п. Теперь можно перейти к рассуждениям: «Больше стало рыбок или меньше, когда мальчик поймал еще одну?» «Конечно, больше!» — отвечают дети. «Почему?» — «Потому что к пяти рыбкам прибавили еще одну рыбку». Воспитатель поощряет этот ответ и формулирует арифметическое действие: «Дима правильно сказал, надо сложить два числа, названные в задаче. К пяти прибавить один. Это называется действием сложения».
Словесная формулировка подкрепляется практическими действиями: «К трем красным кругам прибавим один синий круг и получим четыре круга». Но постепенно арифметическое действие следует отделять от конкретного материала: «Какое число прибавили к какому?» Теперь уже при формулировке арифметического действия числа не именуются. Спешить с переходом к оперированию отвлеченными числами не следует. Такие абстрактные понятия, как «число», «арифметическое действие», становятся доступными лишь на основе длительных упражнений детей с конкретным материалом.
Когда дети освоятся в основном с действием сложения, можно будет перейти к обучению вычитанию.
При формулировке арифметического действия можно считать правильным, когда дети говорят отнять, прибавить, вычесть, сложить. Слова сложить, вычесть, получится, равняется являются специальными математическими терминами. Этим терминам соответствуют бытовые слова прибавить, отнять, стало, будет. Разумеется, бытовые слова ближе опыту ребенка, но желательно, чтобы воспитатель в своей речи пользовался математической терминологией, постепенно приучая и детей к употреблению этих слов. Например, ребенок говорит: «Нужно отнять из пяти яблок одно», — а воспитатель уточняет: «Нужно из пяти яблок вычесть одно яблоко».
Упражняя детей в формулировке действия, полезно предлагать задачи с одинаковыми числовыми данными на разные действия.
Например: «У Саши было три воздушных шара. Один шар улетел. Сколько шаров осталось?» Или: «Коле подарили три книги и одну машину. Сколько подарков получил Коля?» Устанавливается, что это задачи на разные действия. Важно при этом обращать внимание на правильную и полную формулировку ответа на вопрос задачи.
Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий. Например: «На дереве сидели четыре птички, одна птичка улетела. Сколько птичек осталось на дереве?» Или: «На дереве сидели четыре птички. Прилетела еще одна. Сколько птичек стало на дереве?» Хорошо, когда подобные задачи составляются одновременно и детьми.
На основе анализа данных задач дети приходят к выводу, что, хотя в обеих задачах речь идет об одинаковом количестве птичек, они выполняют разные действия. В одной задаче одна птичка улетает, а в другой — прилетает, поэтому в одной задаче числа нужно сложить, а в другой — вычесть одно из другого. Вопросы в задачах различны, поэтому различны и арифметические действия, различны ответы.
Такое сопоставление задач, их анализ полезны детям, так как они лучше усваивают как содержание задач, так и смысл арифметического действия, обусловленного содержанием.
Воспитатель задает вопрос, содержание которого близко к содержанию вопроса задачи: «Что надо сделать, чтобы узнать, сколько птичек сидит на дереве?» Затем вопрос формулируется в более общем виде: «Что надо сделать, чтобы решить эту задачу?» Или: «Что надо сделать, чтобы ответить на вопрос задачи?»
Воспитатель не должен мириться с ответами детей: отнять, прибавить. Выполненное действие должно быть сформулировано полно и правильно. Очень важно вовлекать всех детей в обдумы- вание наиболее точного ответа. *
Поскольку к моменту обучения решению задач дети (5—6 лет) уже пользуются цифрами и знаками +,—,=, следует упражнять их в «записи» действия (используя карточки).
Для упражнения детей в распознавании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их «прочесть». По указанным примерам составляются задачи на разные арифметические действия, при этом детям предлагается сделать самостоятельно запись решенных задач, а затем прочесть ее. Обязательно нужно исправить ответы детей, допустивших ошибки в записи. Читая запись, дети скорее обнаруживают свою ошибку.
В дальнейшем детей упражняют в присчитывании и отсчиты-вании по единице.
Если до сих пор вторым слагаемым или вычитаемым в решаемых задачах было число 1, то теперь нужно показать, как следует прибавлять или вычитать числа 2 и 3. Это позволит разнообразить числовые данные задачи и углубить понимание отношений между ними, предупредить автоматизм в ответах детей. Сначала дети учатся прибавлять путем присчитывания по единице и вычитать путем отсчитывания по единице число 2, а затем — число 3.
Присчитывание — это прием, когда к известному уже числу прибавляется второе известное слагаемое, которое разбивается на единицы и прочитывается последовательно по единице. Например, к 6 нужно прибавить 3; тогда: 6+1=7, затем: 7+1=8, затем: 8+1=9. Соответственно при отсчитывании из одного числа вычитается другое последовательно по единице. Например, от восьми отнять три: 8—1=7; 7—1=6; 6—1=5.
Внимание детей должно быть обращено на то, что нет необходимости при сложении пересчитывать по единице первое число, оно уже известно, а второе число (второе слагаемое) следует присчитывать по единице; надо вспомнить лишь количественный состав этого числа из единиц. Этот процесс напоминает детям то, что они делали, когда считали от любого данного числа до указанного числа. При вычитании же числа 2 (или 3) нужно вспомнить его количественный состав из единиц и вычитать это число из уменьшаемого по единице. Это напоминает детям упражнения в обратном счете в пределах указанного им отрезка чисел.
Упражняясь в выполнении действий сложения и вычитания при решении задач, можно ограничиться простейшими случаями сложения (вычитания) чисел 2 и 3. Нет необходимости увеличивать второе слагаемое или вычитаемое число, так как это потребовало бы уже иных приемов вычисления. Решение задач уже в дошкольном возрасте на основе знания состава чисел (3, 4, 5, 6, 7 и др.) из двух меньших является наиболее рациональным. Задача детского, сада состоит в том, чтобы подвести детей к пониманию арифмет-ической задачи и отношений между компонентами арифметических действий сложения и вычитания.
Молено предложить дошкольникам составлять задачи без наглядного материала (устные). В них дети самостоятельно выбирают тему.^ сюжет и действие, с помощью которого она должна быть решена.
Прц составлении устных задач важно следить за тем, чтобы они не были шаблонными. В условии отражаются жизненные связи, бытовые и игровые ситуации. Следует приучать детей рас-суждать,, обосновывать свой ответ, в отдельных случаях использовать дл% этого наглядный материал.
Освоение детьми 5—6 лет отношений часть — целое на основе деления целого на равные части
Де-чению целого на равные части в истории методики развития матемаХических представлений уделено большое внимание в силу особой значимости данного содержания в развитии практических действий детей 4—7 лет, их мышления. В методических разработках Е. И. Тихеевой, Ф. Н. Блехер, А. М. Леушиной и других педагогов прошлого представлены игры и упражнения, способствующие освоению этого жизненно важного уже в дошкольном возрасте Содержания.
В 5—6 лет дети овладевают умением делить целое (фигуры, предмехы) на равные части. Это необходимо в качестве пропедевтики ¥ усвоению долей и дробных чисел в школе, для углубления пони^аНия детьми математических отношений: больше, меньше, равны,
Обучение строится на зависимостях целого и части: часть всегда мецьше целого, а целое больше части; при указанном способе деления части целого равны между собой; существует функциональная зависимость между количеством и размером частей: чем больите количество частей, на которое делится целое, тем меньше каждая часть, и наоборот, чем меньше каждая часть, тем на большее количество частей разделено целое (при делении двух одина-ковых по размеру предметов).
Деление целого на части осуществляется практически путем складывания с последующим разрезанием или путем разрезания.
Освоение детьми способов деления целого на равные части и отношения целое — часть способствует углублению понимания ими единицы. Слово один они относят к разным величинам: то к целому, то к его части, причем разного размера.
Обучение делению целого на части осуществляется с учетом особенностей понимания детьми отношения целое — часть. К старшему дошкольному возрасту у детей накапливается опыт деления целого на части (в играх, конструировании, быту). У них складывается бытовое понимание целого как неделимого и восприятие каждой части целого как нового, самостоятельного объекта.
Содержание обучения состоит в следующем:
деление предмета на две, четыре или восемь равных частей путем разрезания или последовательного складывания плоских предметов пополам (один, два или три раза);
освоение зависимости целого и части, умение воспринимать как целое не только неразделенный предмет, но и воссозданный из частей;
упражнение в способе сравнения частей, полученных при делении целого на равные части, путем наложения;
уточнении значения слова равны;
развитие самостоятельности мышления, сообразительности;
упражнение в нахождении новых способов деления;
выявление зависимостей.
В результате упражнений дети начинают воспринимать половину как часть целого, разделенного на две равные части; четвертую часть как часть целого, разделенного на четыре равные части. Они учатся выражать в речи способы деления и складывания; соотношение частей.
Опыт складывания, деления бумаги разных форм, объемных предметов на неравные и равные части дети накапливают в разных видах игр, бытовой деятельности; при выполнении аппликаций, изготовлении простых поделок из бумаги, делении с практической целью полосок бумаги, шнуров, тесьмы, кругов и дорожек, нарисованных на асфальте и др. Сгибание плоских предметов (так, чтобы получились при этом две или четыре равные части (доли)) даже без разрезания дает возможность обнаружить эти части (визуально, на основе действия), их количество и соотношение с целым: каждая из частей меньше целого, целое больше части.
Детям свойственно определять полученные в результате деления части, пользуясь названиями геометрических фигур (квадраты, треугольники). Они не выделяют форму частей: части квадратной, треугольной формы. Слово часть в своей речи они заменяют названиями геометрических фигур. Предупреждению данной ошибки и упражнению в употреблении слов часть, часть целого, половина, четверть способствуют упражнения в делении таких предметов, когда в результате получаются части, не имеющие прямого сходства с геометрическими фигурами (разной формы четырехугольники, овалы, круги).
В процессе деления путем складывания дети убеждаются в том, что одноразовое перегибание листа бумаги ведет к получению двух равных частей, двухразовое — четырех и т. д.
В дальнейшем педагог упражняет детей в делении целого путем складывания с разрезанием и последующим склеиванием частей для воссоздания целого. С целью уточнения зависимостей целого и частей используется прием деления на равные и неравные части. Педагог, указывая на часть, спрашивает детей, можно ли ее называть частью целого — половиной, одной четвертой частью, предлагает использовать практические приемы для убеждения в этом: наложение частей, воссоздание целого.
Дети, обучаясь делению предметов (яблока, пряника) в бытовых для них ситуациях на равные и неравные части путем разрезания, уточняют, что только при делении на равные части каждую из них можно назвать долей. В игровой ситуации при соблюдении требований к делению каждый из участников получает предназначенную ему долю целого предмета.
Параллельно используются следующие виды наглядного материала: игра «Дроби» (выпускается ООО «Оксва», Санкт-Петербург), «Чудо-цветик» (ООО «РИВ», Санкт-Петербург); обучающая игра «Дом дробей» (ООО «Играем вместе», Екатеринбург; см. илл. 9 цв. вкладки); фигуры из бумаги, лоскутки ткани;
фрукты, овощи, конфеты, булочки, то, что удобно и естественно делить.
Предложенные игры удобны в использовании, т. к. в них предмет уже поделен, как правило на 10—12 частей. Дети воспринимают части, их относительный размер, оперируют ими. Составляя многократно одну и ту же фигуру, например круг из разного количества частей (из 2, 3,4-х), дети убеждаются, что по мере увеличения числа частей уменьшается размер каждой из них.
При использовании игр дети осваивают общую последовательность деления, что не всегда удобно при использовании бумажных листов, делить которые на 3, 5, 6 частей довольно трудно.
При делении группы предметов на части дети убеждаются: чем больше по количеству целое (группа предметов), тем больше предметов в каждой части. Выделяется и более сложная зависимость между количеством частей, на которые делится целое, и количеством предметов в группе. Например, дети делят совокупность из шести предметов на две части (раскладывают шарики в две коробки). Затем другую совокупность из восьми шариков раскладывают тоже в две коробки. Выясняют, что число предметов в группе зависит от их общего количества.
В другой раз берутся две равные совокупности: шесть синих и столько же красных шаров. Синие шары раскладываются в две коробки, а красные — в три коробки. Выясняется количество полученных групп в первом и втором случае, а также количество предметов в группе; выявляется зависимость количества предметов в каждой группе от количества этих групп. Зависимости аналогичны тем, что имеют место при измерении.
Используется и мерка, с помощью которой делится предмет (дощечка, лист картона) на равные части. Мерка дается в готовом виде или изготавливается детьми путем складывания. Теперь способ деления можно применять в изготовлении мерки, равной половине, третьей части делимого предмета.
В дальнейшем большее и меньшее по размеру целое делится на равное количество частей, выясняется зависимость размера части и целого. Затем целое, например два-три равных по размеру круга, делится на разное количество частей (2, 4 и 8), сопоставляются части по размеру и количеству, делается вывод.
Такие упражнения в непосредственном делении целого на равные части дают детям возможность выделить и осознать зависимости между количеством полученных в результате частей и их размером.
Резюме
Овладение детьми 5—6 лет измерением различных величин условными мерками; действиями сложения и вычитания путем осуществления вычислительных приемов или на основе знания состава чисел из двух меньших; делением целого на равные части способствует абстрагированию числа, пониманию числового (количественного) значения цифры как знака, образа, условности. W От степени активности мыслительной деятельности детей в процессе применения взрослым в обучении проблемных, игровых технологий, элементов исследовательской деятельности будут зависеть развитие их способностей (восприятия, мышления, воображения) и успех ориентировки в окружающем их материальном и социальном мире.
Литература
Березина Р. Л. Формирование у детей старшего дошкольного возраста знаний о способах и мерах измерения протяженностей, массы и объема. / Теория и технологии математического развития детей дошкольного возраста. Хрестоматия / Сост.: 3. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова. — М.: Центр педагогического образования, 2008.
Берешвили Г. Д., Котетишвили И. В. С чего начинатыобуче-ние математике в школе. Там же.
Непомнящая Н И. Проблемы начального этапа обучения математике. Там же.
Непомнящая Н. И. Усвоение математических действий в дошкольном возрасте. Там же.
Щербакова Е. И. Методика обучения математике в детском саду.— М.: Академия, 2000.
Вопросы и задания для самоконтроля
© Выделите линии взаимосвязи счета, измерения, действий сложения и вычитания, деления целого на равные части. Представьте обоснование.
© Выскажите свое мнение по поводу возможности (или отсутствия таковой) самостоятельного изготовления ребенком шести лет материала для построения упорядоченного ряда (по длине, ширине, весу, объему). Представьте алгоритм деятельности (если она возможна).
© Представьте, что вы в «Лаборатории нерешенных проблем». Запишите проблемы, предложите сокурсникам решить их. Выслушайте их мнение, оцените их эрудицию.
- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников