logo
Михайлова З

Увеличение и уменьшение чисел. Решение практических задач

Задачи на увеличение (уменьшение) числа на один в процессе непосредственного практического действия доступны понима­нию детьми четвертого года жизни. Е. И. Тихеева советовала ре­шать «бытовые» задачи с детьми этого возраста. Педагог обращает внимание детей на увеличение количества игрушек, материалов и просит выразить в действии и речи изменение: чего стало больше (меньше), на сколько, сколько всего и т. д.

В старшем дошкольном возрасте (5—6 лет) арифметические задачи (на сложение и вычитание) используются с целью подве­дения детей к простым вычислениям, практикования в примене­нии знаний о составе чисел из двух меньших чисел при выполне­нии действий сложения и вычитания. Условия задач, как правило, отражают содержание игровых и бытовых ситуаций детской жизни. Решить задачу означает понять связи, которые даны в ус­ловии (содержательные и числовые), а также связи между данны­ми задачи и искомым. Понимание этих связей определяет выбор арифметического действия.

Установив эти связи, ребенок довольно легко приходит к по­ниманию смысла арифметических действий и значений понятий прибавить, вычесть, получится, останется. Решая задачи, дети ов­ладевают умением находить зависимости величин.

Вместе с тем задачи являются одним из средств развития у де­тей логического мышления, смекалки, сообразительности. В ра­боте с задачами совершенствуются умения проводить анализ и синтез, обобщать и конкретизировать, раскрывать основное, вы­делять главное в тексте задачи и отбрасывать несущественное, второстепенное.

Дошкольникам свойственно своеобразное понимание сущ­ности арифметической задачи, отраженное как в специальной ли­тературе, так и в художественной. В педагогике этот вопрос изу­чался А. М. Леушиной, Е. А. Тархановой, Н. И. Непомнящей, Л. П. Клюевой и др. Детям свойственно понимать задачу как рас­сказ, историю, загадку, ситуацию и игнорировать числовые дан­ные. Текст задачи дети трактуют произвольно, преобразуют его по своему усмотрению. Часто вопрос задачи заменяют ответом-ре­шением.

Е. А. Тарханова выяснила, что дети понимают сущность ариф­метического действия по ассоциации его с жизненным: прибави­ли — прибежали, отняли — улетели и др. Они не осознают еще математических связей между компонентами и результатом того или иного действия.

Даже в тех случаях, когда дети формулировали арифметиче­ское действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т. е. не осознали отношений между компонентами арифметического действия как единства отношений целого и его частей. Поэтому и решали зада­чу привычным способом счета, не прибегая к рассуждению о свя­зях и отношениях между компонентами.

Детям дошкольного возраста (5—6 лет) предлагаются для ре­шения только простые задачи, решаемые одним действием сложе­ния или вычитания.

В зависимости от используемого для составления задач на­глядного материала они делятся на задачи-драматизации и зада­чи-иллюстрации. Эти задачи помогают ребенку определить тема тику, сюжет, отношения между числами и перейти к самостоя­тельному составлению задач.

В задачах-драматизациях наиболее наглядно раскрывается их смысл. Задачи этого вида особенно ценны на первом этапе обуче­ния: дети учатся составлять задачи про самих себя, рассказывать о действиях друг друга, ставить вопрос для решения, поэтому структура задачи на примере задач-драматизаций наиболее до­ступна детям.

Особое место в системе наглядных пособий занимают зада­чи-иллюстрации. Если в задачах-драматизациях все предопреде­лено, то в задачах-иллюстрациях при помощи игрушек создается простор для разнообразия сюжетов (в них ограничиваются лишь тематика и числовые данные).

Для иллюстрации задач широко применяются различные кар­тинки. Основные требования к ним: простота сюжета, динамизм содержания и ярко выраженные количественные отношения между объектами. На одних из них все предопределено: и тема, и содержание, и числовые данные. Например, на картинке нарисо­ваны три легковых и одна грузовая машина. С этими данными можно составить 1 или 2 варианта задач.

Но задачи-картинки могут иметь и более динамичную направ­ленность. Например, можно взять картину-панно, на которой изображены озеро и берег; на берегу нарисован лес. На изображе­нии озера, берега и леса сделаны надрезы, в которые можно вста­вить небольшие контурные изображения разных предметов. Те­матика и здесь предопределена, но числовые данные и содержа­ние задачи можно в известной степени варьировать (утки плавают, выходят на берег и др.).

Методические приемы в обучении решению арифметических задач

Обучение дошкольников решению арифметических задач проходит через ряд взаимосвязанных между собой этапов.

Первый этап — подготовительный. Основная цель этого эта­па — организовать систему упражнений по выполнению опера­ций над множествами. Так, подготовкой к решению задач на сло­жение являются упражнения по объединению множеств. Упраж­нения на выделение части множества проводятся для подготовки детей к решению задач на вычитание. С помощью операций над множествами раскрывается отношение часть — целое, доводится до понимания смысл выражений больше на, меньше на.

Учитывая особенности мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Воспитатель предлагает детям отсчитать и положить на карточку шесть грибов, а затем добавить еще два гриба. Дети вы­полняют задание, и воспитатель спрашивает: «Сколько всего стало грибов? (Дети считают.) Почему их стало восемь? На сколько грибов стало больше?» Подобные упражнения проводят­ся и на выделение части множества. В качестве наглядной основы для понимания детьми отношений между частями и целым могут применяться диаграммы Эйлера—Венна, в которых эти отноше­ния изображаются графически.

На втором этапе нужно упражнять детей в составлении задач и подводить к усвоению их структуры. Дети осваивают умения ус­танавливать связи между данными и искомым и на этой основе выбирать для решения необходимое арифметическое действие; понимать вопрос «Что нужно узнать?»

На этом этапе составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учиты­вать, чтобы не затруднять детей поиском способов решения зада­чи. Прибавить или вычесть число 1 они могут на основе име­ющихся у них знаний об образовании следующего или предыду­щего числа. Например, воспитатель просит ребенка принести и поставить в стакан семь флажков, а в другой — один флажок. Эти действия и будут содержанием задачи, которую составляет воспи­татель. Текст задачи произносится так, чтобы были четко названы условие, вопрос и числовые данные.

При обучении дошкольников составлению арифметической задачи важно показать, чем она отличается от рассказа, загадки, логической задачи.

Например, чтобы показать отличие задачи от рассказа и под­черкнуть значение чисел и вопроса задачи, воспитателю следует предложить детям рассказ, похожий на задачу. В рассуждениях по содержанию рассказа отмечается, чем отличается рассказ от задачи.

Чтобы научить детей отличать задачу от загадки, воспитатель подбирает такую загадку, где имеются числовые данные. Напри­мер: «Два кольца, два конца, а посередине — гвоздик». «Что это?» — спрашивает воспитатель.

В дальнейшем, упражняя детей в составлении задач, нужно особо подчеркнуть необходимость числовых данных. Например, воспитатель предлагает следующий текст задачи: «Лене я дала гусей и уток. Сколько птиц я дала Лене?» В процессе обсуждения этого текста выясняется, что такую задачу решить нельзя, так как не указано, сколько было дано гусей и сколько — уток. Лена сама составляет задачу, предлагая детям решить ее: «Мария Петровна дала мне восемь уток и одного гуся. Сколько птиц дала мне Мария Петровна?» «Всего девять птиц», — говорят дети.

Чтобы убедить детей в необходимости наличия не менее двух чисел в задаче, воспитатель намеренно опускает одно из числовых данных: «Сережа держал в руках четыре воздушных шарика, часть из них улетела. Сколько шариков осталось у Сережи?» Дети при­ходят к выводу, что такую задачу решить невозможно, так как в ней не указано, сколько шариков улетело. Воспитатель соглаша­ется с ними: действительно, в задаче не названо второе число, а в задаче всегда должно быть два числа. Задача повторяется в изме­ненном виде: «Сережа держал в руках четыре шарика, один из них улетел. Сколько шариков осталось у Сережи?»

На конкретных примерах из жизни дети яснее осознают необ­ходимость иметь два числа в условии задачи, усваивают отноше­ния между величинами, начинают различать известные данные в задаче и искомое неизвестное.

Упражнять детей в умении высказываться по поводу арифме­тического действия сложения или вычитания — задача третьего этапа.

Дошкольники без затруднения находят ответ на вопрос зада­чи, исходя из последовательности чисел, связей и отношений между ними. Теперь же требуется выделить действия сложения и вычитания, раскрыть их смысл, «записать» их с помощью цифр и знаков в виде числового примера.

Прежде всего надо предложить детям составить задачи на нахож­дение суммы по двум слагаемым. «Мальчик поймал пять карасей и одного окуня», — говорит Саша. «Сколько рыбок поймал маль­чик?» — формулирует вопрос Коля. Воспитатель предлагает детям ответить на вопрос. Выслушав ответы нескольких детей, он задает им новый вопрос: «Как вы узнали, что мальчик поймал шесть рыбок?» Дети отвечают, как правило, по-разному: «Увидели», «Сосчитали», «Мы знаем, что пять да один будет шесть» и т.п. Теперь можно перейти к рассуждениям: «Больше стало рыбок или меньше, когда мальчик поймал еще одну?» «Конечно, больше!» — отвечают дети. «Почему?» — «Потому что к пяти рыбкам приба­вили еще одну рыбку». Воспитатель поощряет этот ответ и форму­лирует арифметическое действие: «Дима правильно сказал, надо сложить два числа, названные в задаче. К пяти прибавить один. Это называется действием сложения».

Словесная формулировка подкрепляется практическими дей­ствиями: «К трем красным кругам прибавим один синий круг и получим четыре круга». Но постепенно арифметическое действие следует отделять от конкретного материала: «Какое число приба­вили к какому?» Теперь уже при формулировке арифметического действия числа не именуются. Спешить с переходом к оперирова­нию отвлеченными числами не следует. Такие абстрактные поня­тия, как «число», «арифметическое действие», становятся доступ­ными лишь на основе длительных упражнений детей с конкрет­ным материалом.

Когда дети освоятся в основном с действием сложения, можно будет перейти к обучению вычитанию.

При формулировке арифметического действия можно считать правильным, когда дети говорят отнять, прибавить, вычесть, сло­жить. Слова сложить, вычесть, получится, равняется являются специальными математическими терминами. Этим терминам со­ответствуют бытовые слова прибавить, отнять, стало, будет. Раз­умеется, бытовые слова ближе опыту ребенка, но желательно, чтобы воспитатель в своей речи пользовался математической терминоло­гией, постепенно приучая и детей к употреблению этих слов. На­пример, ребенок говорит: «Нужно отнять из пяти яблок одно», — а воспитатель уточняет: «Нужно из пяти яблок вычесть одно яблоко».

Упражняя детей в формулировке действия, полезно предлагать задачи с одинаковыми числовыми данными на разные действия.

Например: «У Саши было три воздушных шара. Один шар улетел. Сколько шаров осталось?» Или: «Коле подарили три книги и одну машину. Сколько подарков получил Коля?» Устанавливается, что это задачи на разные действия. Важно при этом обращать внимание на правильную и полную формулировку ответа на вопрос задачи.

Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий. Например: «На дереве сидели четыре птички, одна птичка улетела. Сколько пти­чек осталось на дереве?» Или: «На дереве сидели четыре птички. Прилетела еще одна. Сколько птичек стало на дереве?» Хорошо, когда подобные задачи составляются одновременно и детьми.

На основе анализа данных задач дети приходят к выводу, что, хотя в обеих задачах речь идет об одинаковом количестве птичек, они выполняют разные действия. В одной задаче одна птичка уле­тает, а в другой — прилетает, поэтому в одной задаче числа нужно сложить, а в другой — вычесть одно из другого. Вопросы в задачах различны, поэтому различны и арифметические действия, различ­ны ответы.

Такое сопоставление задач, их анализ полезны детям, так как они лучше усваивают как содержание задач, так и смысл арифме­тического действия, обусловленного содержанием.

Воспитатель задает вопрос, содержание которого близко к со­держанию вопроса задачи: «Что надо сделать, чтобы узнать, сколь­ко птичек сидит на дереве?» Затем вопрос формулируется в более общем виде: «Что надо сделать, чтобы решить эту задачу?» Или: «Что надо сделать, чтобы ответить на вопрос задачи?»

Воспитатель не должен мириться с ответами детей: отнять, прибавить. Выполненное действие должно быть сформулировано полно и правильно. Очень важно вовлекать всех детей в обдумы- вание наиболее точного ответа. *

Поскольку к моменту обучения решению задач дети (5—6 лет) уже пользуются цифрами и знаками +,—,=, следует упражнять их в «записи» действия (используя карточки).

Для упражнения детей в распознавании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их «прочесть». По указан­ным примерам составляются задачи на разные арифметические действия, при этом детям предлагается сделать самостоятельно за­пись решенных задач, а затем прочесть ее. Обязательно нужно ис­править ответы детей, допустивших ошибки в записи. Читая за­пись, дети скорее обнаруживают свою ошибку.

В дальнейшем детей упражняют в присчитывании и отсчиты-вании по единице.

Если до сих пор вторым слагаемым или вычитаемым в решае­мых задачах было число 1, то теперь нужно показать, как следует прибавлять или вычитать числа 2 и 3. Это позволит разнообразить числовые данные задачи и углубить понимание отношений между ними, предупредить автоматизм в ответах детей. Сначала дети учатся прибавлять путем присчитывания по единице и вычитать путем отсчитывания по единице число 2, а затем — число 3.

Присчитывание — это прием, когда к известному уже числу прибавляется второе известное слагаемое, которое разбивается на единицы и прочитывается последовательно по единице. Напри­мер, к 6 нужно прибавить 3; тогда: 6+1=7, затем: 7+1=8, затем: 8+1=9. Соответственно при отсчитывании из одного числа вычи­тается другое последовательно по единице. Например, от восьми отнять три: 8—1=7; 7—1=6; 6—1=5.

Внимание детей должно быть обращено на то, что нет необхо­димости при сложении пересчитывать по единице первое число, оно уже известно, а второе число (второе слагаемое) следует при­считывать по единице; надо вспомнить лишь количественный со­став этого числа из единиц. Этот процесс напоминает детям то, что они делали, когда считали от любого данного числа до указан­ного числа. При вычитании же числа 2 (или 3) нужно вспомнить его количественный состав из единиц и вычитать это число из уменьшаемого по единице. Это напоминает детям упражнения в обратном счете в пределах указанного им отрезка чисел.

Упражняясь в выполнении действий сложения и вычитания при решении задач, можно ограничиться простейшими случаями сложения (вычитания) чисел 2 и 3. Нет необходимости увеличи­вать второе слагаемое или вычитаемое число, так как это потребо­вало бы уже иных приемов вычисления. Решение задач уже в до­школьном возрасте на основе знания состава чисел (3, 4, 5, 6, 7 и др.) из двух меньших является наиболее рациональным. Задача детского, сада состоит в том, чтобы подвести детей к пониманию арифмет-ической задачи и отношений между компонентами ариф­метических действий сложения и вычитания.

Молено предложить дошкольникам составлять задачи без на­глядного материала (устные). В них дети самостоятельно выбира­ют тему.^ сюжет и действие, с помощью которого она должна быть решена.

Прц составлении устных задач важно следить за тем, чтобы они не были шаблонными. В условии отражаются жизненные связи, бытовые и игровые ситуации. Следует приучать детей рас-суждать,, обосновывать свой ответ, в отдельных случаях использо­вать дл% этого наглядный материал.

Освоение детьми 5—6 лет отношений часть целое на основе деления целого на равные части

Де-чению целого на равные части в истории методики развития матемаХических представлений уделено большое внимание в силу особой значимости данного содержания в развитии практических действий детей 4—7 лет, их мышления. В методических разработ­ках Е. И. Тихеевой, Ф. Н. Блехер, А. М. Леушиной и других педа­гогов прошлого представлены игры и упражнения, способству­ющие освоению этого жизненно важного уже в дошкольном воз­расте Содержания.

В 5—6 лет дети овладевают умением делить целое (фигуры, предмехы) на равные части. Это необходимо в качестве пропедев­тики ¥ усвоению долей и дробных чисел в школе, для углубления пони^аНия детьми математических отношений: больше, меньше, равны,

Обучение строится на зависимостях целого и части: часть всег­да мецьше целого, а целое больше части; при указанном способе деления части целого равны между собой; существует функцио­нальная зависимость между количеством и размером частей: чем больите количество частей, на которое делится целое, тем меньше каждая часть, и наоборот, чем меньше каждая часть, тем на боль­шее количество частей разделено целое (при делении двух одина-ковых по размеру предметов).

Деление целого на части осуществляется практически путем складывания с последующим разрезанием или путем разрезания.

Освоение детьми способов деления целого на равные части и отношения целое — часть способствует углублению понимания ими единицы. Слово один они относят к разным величинам: то к целому, то к его части, причем разного размера.

Обучение делению целого на части осуществляется с учетом особенностей понимания детьми отношения целое — часть. К старшему дошкольному возрасту у детей накапливается опыт деления целого на части (в играх, конструировании, быту). У них складывается бытовое понимание целого как неделимого и вос­приятие каждой части целого как нового, самостоятельного объ­екта.

Содержание обучения состоит в следующем:

В результате упражнений дети начинают воспринимать поло­вину как часть целого, разделенного на две равные части; четвер­тую часть как часть целого, разделенного на четыре равные части. Они учатся выражать в речи способы деления и складывания; со­отношение частей.

Опыт складывания, деления бумаги разных форм, объемных предметов на неравные и равные части дети накапливают в раз­ных видах игр, бытовой деятельности; при выполнении аппли­каций, изготовлении простых поделок из бумаги, делении с практической целью полосок бумаги, шнуров, тесьмы, кругов и дорожек, нарисованных на асфальте и др. Сгибание плоских предметов (так, чтобы получились при этом две или четыре рав­ные части (доли)) даже без разрезания дает возможность обна­ружить эти части (визуально, на основе действия), их количество и соотношение с целым: каждая из частей меньше целого, целое больше части.

Детям свойственно определять полученные в результате деле­ния части, пользуясь названиями геометрических фигур (квадра­ты, треугольники). Они не выделяют форму частей: части квадрат­ной, треугольной формы. Слово часть в своей речи они заменяют названиями геометрических фигур. Предупреждению данной ошибки и упражнению в употреблении слов часть, часть целого, половина, четверть способствуют упражнения в делении таких предметов, когда в результате получаются части, не имеющие пря­мого сходства с геометрическими фигурами (разной формы четы­рехугольники, овалы, круги).

В процессе деления путем складывания дети убеждаются в том, что одноразовое перегибание листа бумаги ведет к получе­нию двух равных частей, двухразовое — четырех и т. д.

В дальнейшем педагог упражняет детей в делении целого путем складывания с разрезанием и последующим склеиванием частей для воссоздания целого. С целью уточнения зависимо­стей целого и частей используется прием деления на равные и неравные части. Педагог, указывая на часть, спрашивает детей, можно ли ее называть частью целого — половиной, одной чет­вертой частью, предлагает использовать практические приемы для убеждения в этом: наложение частей, воссоздание целого.

Дети, обучаясь делению предметов (яблока, пряника) в быто­вых для них ситуациях на равные и неравные части путем разре­зания, уточняют, что только при делении на равные части каждую из них можно назвать долей. В игровой ситуации при соблюдении требований к делению каждый из участников получает предназна­ченную ему долю целого предмета.

Параллельно используются следующие виды наглядного ма­териала: игра «Дроби» (выпускается ООО «Оксва», Санкт-Пе­тербург), «Чудо-цветик» (ООО «РИВ», Санкт-Петербург); обу­чающая игра «Дом дробей» (ООО «Играем вместе», Екатерин­бург; см. илл. 9 цв. вкладки); фигуры из бумаги, лоскутки ткани;

фрукты, овощи, конфеты, булочки, то, что удобно и естественно делить.

Предложенные игры удобны в использовании, т. к. в них пред­мет уже поделен, как правило на 10—12 частей. Дети воспринима­ют части, их относительный размер, оперируют ими. Составляя многократно одну и ту же фигуру, например круг из разного ко­личества частей (из 2, 3,4-х), дети убеждаются, что по мере увели­чения числа частей уменьшается размер каждой из них.

При использовании игр дети осваивают общую последова­тельность деления, что не всегда удобно при использовании бу­мажных листов, делить которые на 3, 5, 6 частей довольно трудно.

При делении группы предметов на части дети убеждаются: чем больше по количеству целое (группа предметов), тем больше пред­метов в каждой части. Выделяется и более сложная зависимость между количеством частей, на которые делится целое, и количе­ством предметов в группе. Например, дети делят совокупность из шести предметов на две части (раскладывают шарики в две короб­ки). Затем другую совокупность из восьми шариков раскладывают тоже в две коробки. Выясняют, что число предметов в группе за­висит от их общего количества.

В другой раз берутся две равные совокупности: шесть синих и столько же красных шаров. Синие шары раскладываются в две коробки, а красные — в три коробки. Выясняется количество по­лученных групп в первом и втором случае, а также количество предметов в группе; выявляется зависимость количества предме­тов в каждой группе от количества этих групп. Зависимости ана­логичны тем, что имеют место при измерении.

Используется и мерка, с помощью которой делится предмет (дощечка, лист картона) на равные части. Мерка дается в готовом виде или изготавливается детьми путем складывания. Теперь спо­соб деления можно применять в изготовлении мерки, равной по­ловине, третьей части делимого предмета.

В дальнейшем большее и меньшее по размеру целое делится на равное количество частей, выясняется зависимость размера части и целого. Затем целое, например два-три равных по размеру круга, делится на разное количество частей (2, 4 и 8), сопоставля­ются части по размеру и количеству, делается вывод.

Такие упражнения в непосредственном делении целого на равные части дают детям возможность выделить и осознать зави­симости между количеством полученных в результате частей и их размером.

Резюме

Овладение детьми 5—6 лет измерением различных величин условными мерками; действиями сложения и вычитания путем осуществления вычислительных приемов или на основе знания состава чисел из двух меньших; делением целого на равные части способствует абстрагированию числа, понима­нию числового (количественного) значения цифры как знака, образа, условности. W От степени активности мыслительной деятельности детей в процессе применения взрослым в обучении проблемных, иг­ровых технологий, элементов исследовательской деятельно­сти будут зависеть развитие их способностей (восприятия, мышления, воображения) и успех ориентировки в окружа­ющем их материальном и социальном мире.

Литература

  1. Березина Р. Л. Формирование у детей старшего дошкольного возраста знаний о способах и мерах измерения протяженностей, массы и объема. / Теория и технологии математического развития детей дошкольного возраста. Хрестоматия / Сост.: 3. А. Михайло­ва, Р. Л. Непомнящая, М. Н. Полякова. — М.: Центр педагогиче­ского образования, 2008.

  2. Берешвили Г. Д., Котетишвили И. В. С чего начинатыобуче-ние математике в школе. Там же.

  3. Непомнящая Н И. Проблемы начального этапа обучения ма­тематике. Там же.

  4. Непомнящая Н. И. Усвоение математических действий в до­школьном возрасте. Там же.

  5. Щербакова Е. И. Методика обучения математике в детском саду.— М.: Академия, 2000.

Вопросы и задания для самоконтроля

© Выделите линии взаимосвязи счета, измерения, действий сло­жения и вычитания, деления целого на равные части. Пред­ставьте обоснование.

© Выскажите свое мнение по поводу возможности (или отсутст­вия таковой) самостоятельного изготовления ребенком шести лет материала для построения упорядоченного ряда (по длине, ширине, весу, объему). Представьте алгоритм деятельности (если она возможна).

© Представьте, что вы в «Лаборатории нерешенных проблем». Запишите проблемы, предложите сокурсникам решить их. Выслушайте их мнение, оцените их эрудицию.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4