2.6. Алгоритмы
Что такое алгоритм
Воспитание детей с самого рождения, в частности воспитание дошкольников, включает усвоение ими разного рода правил и их строгое выполнение (правила утреннего туалета, одевания и раздевания, принятия пищи, перехода улицы и др.). Режим дня дошкольника представляет собой систему предписаний о выполнении детьми и воспитателем действий в определенной последовательности. Обучая детей счету, измерению длин, сложению и вычитанию чисел, уборке комнаты, посадке растений и т. д., мы сообщаем им необходимые правила о том, что и в какой последовательности нужно делать для выполнения задания. Организовывая разнообразные дидактические и подвижные игры, мы знакомим дошкольников с их правилами.
О всех видах деятельности, осуществляемых по определенным предписаниям, говорят, что они выполняются по определенным алгоритмам. С малых лет человек усваивает и исполняет в каждодневной жизни большое число алгоритмов, часто даже не зная, что это такое.
Что такое алгоритм? Нередко встречаются виды однотипных задач, например: сложение двух многозначных чисел; переход улицы, регулируемый или нерегулируемый светофором; измерение длины отрезка и т. д. Естественно возникает вопрос: существует ли достаточно общий способ, который можно было бы использовать для решения любой задачи данного вида однотипных задач?
Если такой общий способ существует, то его называют алгоритмом^ данного вида задач. Для каждого из приведенных выше видов задач имеется соответствующий алгоритм.
1 Слово алгоритм происходит от имени известного математика IX в. аль-Хорезми, что означает «из Хорезма», впервые сформулировавшего правила выполнения арифметических действий над многозначными числами. Через труды аль-Хорезми в Европу проникли способы действий с числами в десятичной системе счисления, которые стали называть алгоритмами согласно латинской транскрипции имени ученого. В течение столетий значение слова «алгоритм» постепенно обобщалось, и сегодня под алгоритмом понимают некоторый общий метод или способ, предписание, инструкцию, свод правил для решения за конечное число шагов любой задачи из определенного вида однотипных задач, для которого предназначен этот метод.
Для задачи сложения двух многозначных чисел известен способ сложения «в столбик», пригодный для сложения любых двух многозначных чисел, т. е. для решения любой частной задачи из этого вида однотипных задач.
Для задачи перехода улицы, например нерегулируемого светофором, можно сформулировать общий способ в виде следующего предписания, состоящего из 10 указаний, или команд:
Подойди к краю тротуара у знака перехода.
Стой.
Смотри налево.
Если идет транспорт слева, то перейди к указанию 2, иначе — к указанию 5.
Пройди до середины улицы.
Стой.
Смотри направо.
Если идет транспорт справа, то перейди к указанию 6, иначе — к указанию 9.
Пройди вторую половину улицы до противоположного тротуара.
10. Переход улицы закончен.
Интуитивно под алгоритмом понимают общепонятное и точное предписание о том, какие действия и в каком порядке необходимо выполнить для решения любой задачи из данного вида однотипных задач.
Это определение, разумеется, не является математическим определением в строгом смысле, так как в нем встречается много терминов, смысл которых хотя и интуитивно может быть ясен, но точно не определен («предписание», «общепонятное», «точное», «действие»). Однако оно представляет собой разъяснение того, что обычно вкладывается в интуитивное понятие алгоритма, а для наших целей этого вполне достаточно.
Какие же свойства характеризуют всякий алгоритм?
Анализ различных алгоритмов позволяет выделить следующие общие свойства, присущие алгоритмам:
а) массовость, т. е. алгоритм предназначен для решения не одной какой-нибудь задачи, а для решения любой задачи из данного вида однотипных задач;
б) определенность (или детерминированность), т. е. алгоритм представляет собой строго определенную последовательность шагов, или действий, он однозначно определяет первый шаг и каждый следующий шаг, не оставляя решающему задачу никакой свободы выбора следующего шага по своему усмотрению;
в) результативность: решая любую задачу из данного вида задач по соответствующему алгоритму, мы за конечное число шагов получаем результат. Разумеется, для различных частных задач одного вида число шагов может оказаться различным, но оно всегда конечно.
Алгоритм — одно из фундаментальных научных понятий, используемое и математикой, и информатикой — наукой, изучающей способы представления, хранения и преобразования информации с помощью различных автоматических устройств. Наличие алгоритма для осуществления некоторой деятельности является необходимым условием передачи этого вида деятельности различным автоматическим устройствам, роботам, компьютерам (от отпуска стакана газированной воды, продажи авиабилета с хранением и преобразованием информации о наличии свободных мест до управления сложными технологическими процессами, не говоря уже о выполнении огромных объемов вычислительной работы, связанной с решением сложных научно-технических задач).
Имеются различные формы записи или представления алгоритмов, предназначенные для различных исполнителей: словесные предписания, в том числе включающие различные формулы; наглядные блок-схемы, ориентированные на исполнителя-человека; программы, представляющие собой запись алгоритма на языке, понятном ЭВМ, т. е. языке программирования.
Здесь уместно уточнить, что означает выдвинутое требование «общепонятности» предписания, которым задается алгоритм. Это означает, что предписание должно быть сформулировано так, чтобы оно было одинаково понятно всем исполнителям той категории, на которую оно ориентировано. Это имеет чрезвычайно важное значение, в частности, при обучении маленьких детей. Например, приведенные выше предписания, задающие алгоритмы перехода улицы и измерения длины, не предназначены для обучения дошкольников. Для этой цели нужно сформулировать их на понятном детям языке, что и делает любой воспитатель, если, разумеется, он имеет соответствующую подготовку и понимает свои задачи.
Однако приведенные выше предписания составлены так, что они выявляют шаговую (дискретную) оперативно-логическую структуру алгоритмов. Поясним, что это означает.
1. Каждый алгоритм может быть представлен в виде последо- вательности шагов. Разумеется, понятие шаг является относитель- ным. Один и тот же алгоритм можно по-разному представить в виде последовательности шагов, и не всегда отдельные шаги соот- ветствуют элементарным действиям. Само понятие элементарное действие относительно: одно и то же действие может быть для одного ребенка, и не только ребенка, элементарным, для друго- го — неэлементарным (в результате чего и возникает необходи- мость в расчленении этого действия на другие, элементарные, действия).
Дискретность структуры алгоритма состоит в том, что для каждого шага можно указать однозначно непосредственно следующий за ним шаг.
2. В приведенных выше предписаниях можно различить два ос- новных вида команд, а следовательно, два основных вида шагов, представленных этими предписаниями алгоритмов: простые ко- манды, предписывающие выполнение некоторых действий («смот- ри влево», «пройди до середины улицы», «выбери мерку», «наложи мерку» и т. д.), и составные, определяющие разветвление процесса решения задачи в зависимости от выполнения или невыполнения некоторого условия («если идет транспорт слева, то перейди к ука- занию 2, иначе — к указанию 5»), называемые условными.
Условная команда имеет вид «если Р, то А, иначе В». Она предписывает следующий порядок действий: если условие Р выполняется (истинно), то выполняется А (в нашем примере — возврат к указанию 2). Если же условие Р не выполняется (ложно), что обозначается словом «иначе», то А пропускается и выполняется В (в нашем примере осуществляется переход к следующему указанию 5).
Условные команды можно записать сокращенно: «если Р, то А», при этом подразумевается, что если условие Рне выполняется, то осуществляется переход к следующей по порядку команде В приведенных выше примерах условные команды, если условие Р выполняется, определяют повторение некоторых действий («стой», «смотри влево», «смотри вправо», «наложи мерку» и т. д.) определенное число раз (пока условие Р выполняется). Такие процессы и соответствующие им алгоритмы, в которых некоторые действия повторяются, называются циклическими.
Если же алгоритм состоит из одних простых команд, то он называется линейным.
Таким образом, различают линейные, разветвленные и циклические алгоритмы.
Алгоритм можно наглядно представить в виде блок-схемы, состоящей из блоков и стрелок. Каждый шаг представляется с помощью блока. Блок, предусматривающий выполнение некоторого действия, изображается в виде прямоугольника, внутри которого записано соответствующее действие. Блок, представляющий логическое условие, изображается в виде ромба, внутри которого записано проверяемое условие. Если за шагом А непосредственно следует шаг В, то от блока А к блоку В проводится стрелка. От каждого прямоугольника исходит только одна стрелка, от каждого ромба — одна или две стрелки (одна с пометкой «да», идущая к блоку, следующему за логическим условием, если оно истинно, другая — с пометкой «нет», идущая к блоку, следующему за логическим условием, если оно ложно). Начало и конец изображаются овальными фигурами.
Алгоритмы, представленные выше с помощью словесных предписаний, могут быть представлены и с помощью блок-схемы, иными словами, эти предписания переводятся в блок-схемы.
На илл. 20 изображена блок-схема алгоритма перехода улицы, нерегулируемого светофором.
Для изображения алгоритмов некоторых детских игр (правил игры) могут быть использованы специальные условные обозначения, которые легко разъясняются детям.
Приведем в качестве примера игру «Преобразование слов», моделирующую понятие алгоритм преобразования слов в данном алфавите.
В этой игре, а по существу серии игр, буквы и слова необычные. Используется двухбуквенный алфавит, состоящий из двухразличных геометрических фигур, например квадратика и кружочка, или из цифр 0 и 1. Словами мы называем конечные цепочки из квадратиков и кружочков (во втором варианте конечные
последовательности из нулей и единиц). Любое сколь угодно длинное слово в нашем алфавите преобразовывается по приведенным на илл. 21 правилам следующим образом: если в заданном слове имеется квадратик, расположенный левее кружочка, то, согласно правилу 1, их нужно поменять местами; если во вновь полученном слове опять имеется квадратик, расположенный левее кружочка, нужно опять их поменять местами и т.д.; правило 1 применяется столько раз, сколько возможно, т. е. пока не получится слово, в котором уже нет квадратика, расположенного левее кружочка, или в котором все кружочки лежат левее всех квадратиков; затем переходим к применению правила 2, а именно: если имеются два рядом стоящих кружочка, их удаляют, и правило 2 применяется столько раз, сколько возможно, т. е. пока не получится слово, в котором нет двух рядом стоящих кружочков; затем переходим к применению правила 3, а именно: если имеются два рядом стоящих квадратика, их удаляют, и это правило применяется столько раз, сколько возможно, т. е. пока не получится слово, в котором нет двух рядом стоящих квадратиков. Полученное слово является результатом преобразования исходного слова по заданным правилам и способу их применения, определяющим вместе некоторый алгоритм преобразования слов в данном алфавите.
На илл. 22 показано преобразование четырех слов по этому алгоритму.
Как показывает опыт обучения, повторив эту игру несколько раз для различных «слов», дети 5—6 лет в состоянии заранее правильно определить, какие вообще могут оказаться результаты сокращения «слов» по заданным правилам: кружочек и квадратик, или один кружочек, или один квадратик, или «ничего» (это «ничего» называют «пустым словом»).
Приведенные выше правила игры вместе с процедурой их применения могут быть изображены блок-схемой (илл. 23).
Умение применять разного рода алгоритмы, тем более умение предвидеть и обосновывать возможные результаты их применения — признак формирования свойственного для математика стиля мышления. Моделирование различных алгоритмов в виде детских игр открывает широкие возможности для формирования зачатков этого стиля мышления уже у дошкольников.
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников