3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
Историческому пути становления и развития методики освоения детьми множеств и чисел свойственно разнообразие подходов. Исходные положения, с учетом которых современными педагогами разрабатываются теории и технологии развития у детей числовых представлений, состоят в следующем.
Первая идея — взгляд на число как на «образ». Согласно этой теории, первоначальное представление о числе у детей складывается на основе восприятия множеств (групп предметов) и называния их числом. Одновременно ребенок начинает соотносить цифру, как знак числа, с адекватным количеством. Это, как правило, числа и цифры: 1, 2, 3. Период восприятия множеств и называния количества элементов числом (без пересчета) исследователи относят к возрасту 2—4 года (В. А. Лай, К. Ф. Лебединцев, Д. Л. Волковский, Н. И.Чуприкова и др.). В психологии такое явление называется субитацией чисел (узнавание количества без счета).
Современным психологом Н. И. Чуприковой проводились эксперименты, в которых дети, не умеющие считать, наблюдали за тем, как это делает кукла, находили ошибки, допущенные ею. По мнению автора исследования, освоению счета предшествуют: стабильность, неизменность, устойчивость порядка числительных; соотнесение объекта только с одним числительным; определение общего количества последним произнесенным числительным; сосчитывание предметов в любом порядке.
Интерес детей 2—3-х лет к называнию количества числом был выявлен в исследовании В. В.Даниловой (1973).
Вторая идея, на которой базируется классическая теория, состоит в понимании числа как результата счета. Эта идея наиболее полно представлена в исследованиях А. М. Леушиной, Н. А. Менчинской и др. «Целостное» восприятие множеств (без сосчитывания) не признавалось данными исследователями и заменялось «аналитическим» — выполнением действий наложения и приложения в процессе сравнения.
Н. А. Менчинская (психолог), проследившая в 50—60-е гг. XX в. процесс развития понятия ребенка о числе, считала «ложным» вопрос о том, что является основой возникновения этого понятия: восприятие множества или счет. По ее мнению, обе точки зрения имеют место. Следует, советовала Н. А. Менчинская, исследовать и реализовывать практически соотношение восприятия множеств и счета на различных этапах овладения ребенком понятием числа.
А. М. Леушина на основе результатов экспериментального исследования (1956) разработала содержание дочислового периода обучения детей 3—4-х лет (сравнение множеств преимущественно путем наложения и приложения, увеличение и уменьшение их) и периода развития у детей в возрасте от 4-х лет числовых представлений (освоение счета, сравнения групп предметов по числу, увеличения и уменьшения чисел, состава чисел). В таком подходе к развитию количественных и числовых представлений в методике обучения не допускалась возможность совмещения взглядов на развитие представлений о числе как «образе» и результате счета. Предлагалось формировать у детей представление о числе в процессе сосчитывания, отсчитывания заданного в образце или названном числе количества, воспроизведения чисел.
Реализацию идеи совмещения двух путей познания ребенком чисел еще в 1923 г. разрешил К. Ф. Лебединцев (в результате многолетних наблюдений за развитием числовых представлений у детей). Он утверждал, что на первоначальном этапе познания чисел ведущим выступает восприятие множества («образ числа»). Постоянно сталкиваясь с необходимостью различать две руки, ноги, ребенок овладевает «образом» этого числа и переносит его на другие множества. Так познаются числа: 1, 2, 3, 4. Далее, за пределами этих совокупностей, познание чисел осуществляется на основе счета, который постепенно вытесняет восприятие множеств. Ребенок учится использовать числовой ряд для счета, ориентироваться в последовательности чисел.
Освоение числового ряда, по мнению Н. И. Чуприковой, изучавшей ступени дифференцированного овладения последовательностью чисел, начинается очень рано, с отличения числительных от других слов. Дети 2-х лет в ответ на просьбу «Сосчитай, сколько будет», как правило, называют числительные, но вне какого-либо порядка. В дальнейшем они осваивают последовательность чисел; постепенно увеличивается стабильная часть последовательности; уменьшается количество таких ошибок, как нарушение порядка и пропуск чисел.
При счете дети допускают ошибки, затрудняются в установлении однозначного соответствия между предметами и числами. Дети на этой (первой) ступени освоения еще не владеют навыками счета.
В дальнейшем, овладевая счетом, дети осваивают связь между числами (смежными элементами). Однако связи эти только прямые, ребенок не может начать называние чисел с любого числа, а только с самого начала последовательности (вторая ступень).
На третьей ступени освоения счета ребенок последовательно называет числа, начиная с любого числа; называет числа в обратном порядке; называет число, которое следует за заданным, и то, которое предшествует ему.
Исследователи выделяют еще одну более высокую ступень, на которой для ребенка предметом счета становятся сами числительные, элементы числового ряда. Теперь он может отсчитать определенное число элементов (например, начиная с 6, отсчитать 3), назвать числа (цифры), используемые при этом.
В 30-е, а затем и в 60—70-е гг. XX в. разрабатывалось положение об особой роли деятельности измерения в освоении чисел детьми дошкольного и младшего школьного возраста.
Согласно теории развития представлений о числе на основе измерения, мерка, применяемая при этом, используется для выделения единиц (Л. С. Георгиев, 1960). Мерка является единицей измерения, а полученное число — результатом. Согласно этой теории, представление о числе начинает складываться у ребенка с представления о мере.
Разработка методик развития у детей числовых представлений с позиций идей теории множеств началась в 50-е гг. XX в. В теории множеств Г. Кантора понятие числа (его количественное значение) базируется на равномощности нескольких совокупностей. Из этого следует подход к методике освоения числа как общего неизменного признака ряда равномощных множеств. Это ведет к осмыслению равночисленности групп предметов (равны по количеству, столько же). Используются равномощные множества: 4 игрушки, 4 книги, 4 ребенка. Все эти числа обозначаются цифрой 4, что подводит ребенка 4—5 лет к обобщению групп предметов по числу (всех по 4).
В методике обучения дети сначала осваивают действия с множествами и свойствами предметов: сравнивают, уравнивают по количеству, соотносят, а затем переходят к усвоению чисел.
Множества дошкольники создают или перечислением всех его элементов по одному разу (один, еще один...) или по характеризующему эти элементы общему свойству (все квадратные; все лежат на одной полке).
По мнению Г. Фройденталя, в основе освоения детьми чисел особое место занимает порядковое число, «проговаривание порядка». Натуральное число рассматривается при этом и как характеристика порядка элементов в множестве. По мнению автора этих мыслей, именно порядковое число ведет к количественному, чем и объясняется значение считалок в развитии у детей числовых представлений. Осваивая порядок номеров домов, телефонов, дети познают принципы нумерации.
Согласно теории Ж. Пиаже, освоение чисел происходит у ребенка в результате синтеза логических операций, таких как классификация и сериация. Число рассматривается как связанное не с конкретными предметными действиями, а с отвлеченными отношениями на уровне логических операций. К таким операциям относится, кроме классификации и сериации, принцип сохранения количества и величины. Освоению чисел предшествуют и сопутствуют упражнения в определении отношений соответствия (один к одному), порядка следования (что за чем следует), тождества (такой же, как.., неизменности (или изменения)) и т.д.
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников