logo
Михайлова З

2.1. Множества Характеристическое свойство множества

Всякое свойство можно рассматривать как принадлежность некоторым предметам.

Например, свойством быть красным обладают некоторые цве­ты, ягоды, автомашины и другие предметы. Свойством быть круг­лым обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.

Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что множество характеризуется данным свойством — или множество задано указанием характеристического свойства.

Под характеристическим свойством множества понимают та­кое свойство, которым обладают все предметы, принадлежащие это­му множеству (элементы этого множества), и не обладает ни один предмет, не принадлежащий ему (не являющийся его элементом).

Иногда свойство отождествляется с множеством предметов, характеризуемым этим свойством. Говоря круглое, мы одновре­менно мыслим о множестве всех круглых предметов.

Если некоторое множество А задано указанием характеристи­ческого свойства Р, то это записывается следующим образом:

А={х\Р(х)}

и читается так: «А — множество всех х таких, что х обладает свой­ством Р», или, короче, «А — множество всехх, обладающих свой­ством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и только те предметы, которые обладают этим свойством.

Естественно, что некоторым свойством может обладать беско­нечное множество предметов, другим — лишь конечное множест­во. Поэтому множества подразделяются на конечные и бесконечные.

Конечное множество может быть задано непосредственным перечислением всех его элементов в произвольном порядке. На­пример, множество детей данной группы, живущих на Садовой улице, может быть задано описанием с помощью характеристи­ческого свойства:

{х\х — живет на Садовой улице} или же перечислением всех его элементов в произвольном порядке:

{Лена, Саша, Витя, Ира, Коля}.

Вполне понятно, что бесконечное множество нельзя задать перечислением всех его элементов.

Математика в большей мере имеет дело с бесконечными мно­жествами (числа, точки, фигуры и другие объекты), но основные математические идеи и логические структуры могут быть смоде­лированы на конечных множествах.

Естественно, что в предматематической подготовке обычно имеют дело с конечными множествами.

Элементами таких множеств могут быть самые разнообразные предметы любой природы, как конкретные (растения, животные, предметы обихода и т. д.), так и абстрактные (числа, геометриче­ские фигуры, отношения и т.д.), или изображения таких объек­тов. Чаще всего мы будем пользоваться множествами, элементами которых являются знакомые детям предметы или их изображения. При этом изображение птички так и будем называть птичкой, изображение дерева — деревом и т. п.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4