Содержание развития у детей количественных и числовых представлений
Представление о числах, их последовательности (порядке следования: 1, 2, 3...), отношениях (=, Щ больше, меньше на 1, на 2), месте в натуральном ряду развивается у детей под влиянием действий с совокупностями объектов; счета; сравнения множеств и чисел; измерения протяженностей по длине, высоте, ширине и обозначения результата числом (цифрой); практического увеличения и уменьшения чисел на 1, 2; решения простейших арифметических задач (на эмпирическом уровне).
Далее представлено содержание развития количественных и числовых представлений у детей третьего и четвертого годов жизни.
Разнообразные манипулятивные действия с множествами предметов, ориентировка в их цвете, размере, форме, количестве {один, много, много — мало) в совместных со взрослым действиях в специально организованной предметно-игровой среде.
Представления о единичности, умение отделять один предмет от другого, приговаривая: «Один, еще один, еще один» и т. д.
Представления об относительности слов мало — много (прослеживание за изменением ситуации: много яблок, мало слив, затем — много груш, а слив по-прежнему мало).
Поэлементное сравнение предметов по количеству (наложением, приложением); установление соответствия. Осуществление сравнения предметов на дочисловом уровне (столько же, больше чем) и по числу (там, где 3 — больше, где 2 — меньше). Выделение лишнего предмета и уравнивание по количеству; указание на множество, в котором, не хватает предмета.
Перечисление однородных и разнородных по составу множеств: один, еще один, еще один и т. д.; называние характеристических свойств элементов множества: цвет, размер, форма.
Восприятие «чисел», называние количества (1, 2, 3). Выбор соответствующих цифр.
Пересчет предметов при поддержке взрослого (до 3—4-х лет).
Независимость численности множества предметов (в пределах 5 элементов) от способа расположения предметов в пространстве (на расстоянии, рядом, в виде круга, ряда и т. д.).
Воспроизведение множеств предметов, звуков, движений (заданных в образце в количестве от 1 до 5).
В процессе разнообразных практических действий с совокупностями дети усваивают и используют в своей речи простые слова и выражения: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из; все, всех.
По просьбе взрослого объясняют и интерпретируют: «Возьму еще один и положу», «Стало», «Становится меньше», «Каждому зайцу дали по морковке», «Всех кукол угостили конфетами», «Этот круг лишний, он мне не нужен», «Квадратов не хватило, значит, их меньше», «Постучал столько же раз» и т. д.
Объяснение своих действий требует от детей использования в речи не только простых, но и более сложных предложений с союзами а, и, отрицанием не, частицей чем: «В шкафу много игрушек, и на полу много», «Большие и маленькие шары положили в коробку», «Красные шары положили в красную коробку, а синие — в синюю», «Здесь красные флажки, а этот — не красный», «Мишек меньше, чем кукол».
На пятом году жизни у детей систематизируются представления о счете как способе обозначения количества числом. Уточняется цель (ответить на вопрос «Сколько всего?»), средство достижения (процесс сосчитывания), назначение результата (получить число, назвать его и обозначить цифрой).
Дети осваивают следующее.
Сравнение множеств (поэлементно, на основе зрительного восприятия, проведения линий от одного предмета к другому и т. д.) с определением количественных отношений числом; с выделением различия на 1 элемент, увеличения или уменьшения одного из сравниваемых множеств, что помогает ребенку понять способ образования как большего, так и меньшего числа.
Умения отсчитывать количество предметов названных, показанных счетной карточкой, цифрой; воспроизводить заданное количество; выполнять просьбы взрослого: «возьми и передай Гале 4 флажка»; «отдай 2 карандаша из пяти имеющихся».
Согласование числительных с существительными в роде, числе, падеже: одна утка; один мяч; одно окно. В отдельных случаях ребенок может пользоваться словом предмет; начальным при счете является числительное один; общее количество называется как «четыре предмета посуды».
Подсчет звуков (на слух), предметов, спрятанных в «чудесном мешочке» (по осязанию), движений другого человека (на основе зрительного восприятия), собственных движений (на основе тактильных ощущений). • Освоение порядка следования чисел и использование порядковых числительных в практической деятельности: при определении номера дома; места животного, направляющегося к водопою в общей «цепочке». Ответы на вопросы «Который?», «Какой по порядку?»
В процессе практических действий с множествами предметов, счета и сравнения дети овладевают словами и выражениями: число (здесь столько же, тоже три, первый, пятый, последний), пара (разложил в ряд, подложил один предмет под другой, составил пары, добавил один предмет, убрал один предмет, стало меньше, сосчитал, отсчитал столько, сколько нарисовано) и др. При этом они упражняются в построении простых и сложных предложений со связками (и, а, если, то), объяснении своих действий, умении задавать простые вопросы со словом сколько о количестве предметов в комнате, на картине.
Дети учатся выражать в речи не только результат своих действий, т. е. отвечать на вопрос «Что ты сделал?», но и способ выполнения действия. Сначала по вопросам педагога, а затем самостоятельно они объясняют ход своих действий. Дети начинают адекватно понимать выражения, употребляемые педагогом: «Сравни по количеству», «Какое из чисел больше?», «Если звуков столько же, сколько предметов, то сколько их?», «Равны по количеству», «Не равны по числу».
В пять лет ребенок владеет счетом до 8—10; число воспринимается им как итог счета, показатель определенного количества предметов, опознавательный и различительный признак нескольких множеств. Поясним. Число 5 и соответствующая цифра показывают на то, что кошек, игрушек, столов по 5. Их количество одинаково. Количество элементов первого, второго, третьего множества выражено одним и тем же числом. Для ребенка пяти лет число является результатом измерения, деления целого на неравные и равные части.
На шестом году жизни дети осваивают следующее. • Осознание независимости количества предметов от занимаемой
ими площади. Предметы одной совокупности раскладываются по горизонтали на близком расстоянии друг от друга, второй — на более далеком расстоянии. Выделяется общий признак предметов, входящих в каждое из множеств. Затем дети по заданию педагога находят отличительные признаки. Это могут быть цвет, форма, размер и т. д. Особо подчеркиваются различия в расстоянии между предметами, а отсюда и в занимаемой каждой совокупностью площади, т. е. в плотности и длине ряда. Количество несущественных признаков в подобных упражнениях нарастает. Первые упражнения следует проводить с использованием однородного материала, при этом подчеркивается, что различие между множествами лишь одно — занимаемая площадь. После противопоставления (предметы расположены близко один к другому, поэтому они занимают мало места, и наоборот) педагог предлагает детям найти способ определения равенства или неравенства количества элементов в множествах: «Как вы считаете, поровну предметов или нет? Как это доказать? В чем вы убедились?»
Умение разбивать совокупности из 4, 6, 8, 10 предметов на группы по 2, 3, 4, 5 предметов, определять количество групп и отдельных предметов.
Освоение состава числа из единиц на конкретных предметах и в процессе измерения, что уточняет и конкретизирует представление о числе, единице, месте числа в натуральном ряду чисел.
Различение количественного и порядкового значения числа, применение количественного и порядкового счета в практической деятельности.
Деление целого (предмет, геометрическая фигура) на 2, 3, 4 равные части, установление зависимостей между частью и целым, частями целого.
Освоение умения пользоваться в речи понятиями (словами), отражающими количественные отношения: поровну, столько же, одинаково по количеству, такое же число, не поровну, число, цифра, наложение, приложение, составление пар, часть, целое, половина, четверть и др.
Использование в речи простых и сложных предложений, кратких и точных выражений; объяснение полученного результата; ответы на вопросы «Что ты сделал?», «Что ты узнал?», «Как достичь результата?» Усиливается внимание к осмыслению вопросов со словами столько, который, адресованных сверстникам, воспитателю.
Понимание смысла слов, которые использует воспитатель: количество, сравни по количеству, отсчитай, по сколько, признак и т. д.
Сравнение множеств, отличающихся на 2, 3, с целью познания отношений: на сколько больше (меньше).
Умение сосчитывать небольшие совокупности (3—5 предметов) быстро, на основе только зрительного восприятия, запоминать числа.
Умения составлять объемные и плоские «числовые лесенки» (модели и схемы) из однородных и разнородных картинок, объектов.
Освоение измерения условными мерками, определение результата. Ответы на вопросы «Скольким меркам равна длина скакалки?», «Где больше воды: в бутылке или банке?», «Какты это узнал?», «Что нужно сделать, чтобы проверить, не ошибся ли ты?» Эти упражнения способствуют познанию числа как отношения измеряемой величины к мере измерения.
Освоение состава чисел из двух меньших чисел. Запоминание результатов в процессе практических упражнений и использование их в процессе решения арифметических задач (исключая освоение понятий: условие, решение).
Современные технологии развития числовых представлений в дошкольном возрасте
Выбор технологий развития количественных и числовых представлений зависит от выделения ведущего в этом процессе действия (способа познания), определяющего успешность. Такой детской деятельностью является сосчитывание (счет) как основа развития у детей представлений о числе.
При выборе и разработке эффективных приемов развития у детей дошкольного возраста числовых представлений учитывается следующее.
• Степень освоенности детьми 3—4-х лет свойств предметов (цвета, формы, размера); умения осуществлять группировку и упорядочение, сравнивать предметы по разным признакам, в том числе и по количеству. Эти умения обеспечивают успех в овладении счетом и переход к обобщению групп предметов по числу. В ходе упражнений по овладению счетом у детей формируется представление о числе как общем признаке как разнородных по своему составу (кукла, мишка, куб, книга), так и однородных множеств (только квадраты).
Признание положения, согласно которому счет для ребенка дошкольного возраста является жизненной потребностью; овладение процессом счета осуществляется наиболее успешно при условии постоянной стимуляции практических действий, восприятия и мышления (Сколько? Чего меньше? Как увеличить? Если добавить 2, то...) при одновременном практикова-нии в применении чисел и цифр.
Необходимость индивидуализации процесса развития количественных представлений. Из этого следует тенденция к конструированию технологии относительно ребенка (нужно избегать ограничений возможности познания ребенком чисел в каком-либо пределе; выравнивания уровня познания чисел разными детьми).
П оложение о том, что ребенку дошкольного возраста доступна лишь степень наглядного оперирования числами. Имеют место разные подходы к определению счета: как процесс установления соответствия между элементами множества и числами натурального ряда; как выявление общего, неизменного, что характеризует несколько равночисленных множеств и др.
При упражнении детей в счете и вычислениях следует учитывать взаимосвязь этих деятельностей: действие увеличения (сложения) рассматривается как «счет вперед», а действие уменьшения (вычитания) — как «счет назад» (Г. Фройден-таль). При вычислениях, как правило, используются только однородные предметы: палочки, квадраты и т. д. Если нужно из 7 вычесть 3 (число 7 уменьшить на 3), то при наличии семи предметов можно, пользуясь умением называть числа в обратном порядке, отсчитать 3: 7, 6, 5. Затем оставшиеся предметы пересчитать или сразу назвать оставшееся количество: 4.
Педагогические технологии, используемые в процессе развития у детей количественных представлений и определяемые как проблемно-игровые, разнообразны. Это проблемные ситуации и задачи, математические игры и упражнения, литературные тексты, учебно-познавательные книги и рабочие тетради, творческие задачи и экспериментирование, моделирование и схематизация и др. Такие средства стимулируют естественную активность познания ребенком чисел и цифр, развивают познавательный интерес, воспитывают эмоционально-ценностное отношение к познанию, прививают культуру познания. Технологии используются, как правило, интегрированные, представленные сенсорными способами познания (обследование, выделение отдельностей, счет, соотнесение один к одному), практическими (сравнение, уравнивание, комплектование); игровыми (приемы «расселения» жильцов, совмещения карточек, размещения игрушек, составления ковриков и отправления поездов); речевыми (комментирование действий, результатов, использование терминологии); схематизацией (цифры, знаки, модели числового ряда).
Выбор технологии зависит от уровня освоения ребенком количественных отношений. Овладение счетом основано на представлениях о свойствах и отношениях равенства и неравенства (больше — меньше, столько же, поровну, одинаково). Следует учитывать, что счет — сложный вид деятельности для ребенка, поэтому определять возрастные сроки овладения счетом в пределе 5, 10 не следует. Нужно знать интересы ребенка, возможности, стремление его к овладению счетом, осознание необходимости пользоваться числами в детских видах деятельности. Умение считать до пяти вполне достаточно для ребенка 4—5 лет.
Выбрав технологию, взрослый начинает следующую работу с ребенком.
Оказывает помощь в определении количества игрушек, ступенек, не требуя от него особых правил, порядка пересчета, называния предметов. Считает с ним вместе, подключается к процессу в случае ошибки, помогает сказать, сколько всего предметов.
Предлагает ребенку считать при условии установления поэлементного соответствия двух множеств, периодически увеличивая (уменьшая) каждое из них на 1 элемент.
Составляет вместе с ребенком лесенки из цветных счетных палочек Кюизенера (плоских, объемных), считает ступеньки, поднимаясь и спускаясь по ним (называя при этом числа в прямом и обратном порядке).
Помогает запоминать последовательность чисел, используя для этого потешки, сказки; соотнести число и цифру.
Включается в моделирование отношений больше — меньше на 1. Пример задания: «Если к мишкам прибавить еще одного, их будет... (больше на.., 5 и т. д.). Принеси столько кубиков».
Организует игровые упражнения, помогающие ребенку понять независимость количества элементов от их расположения, комплектования, размеров и расстояния между ними.
Наблюдает за ребенком с целью выявления особенностей использования им чисел в повседневной жизни. Проблемно-игровые технологии, цель которых — развитие
числовых представлений детей, используются только во взаимосвязи и в контексте других видов детской деятельности: природоведческой, художественной, трудовой, театрализованной и др., что обеспечивает интеграцию и жизненность представлений детей.
Среди учебных пособий, игровых материалов, игр наиболее уместны во всех возрастных группах цветные счетные палочки Кюизенера (для детей 2—3 лет используется учебно-методическое пособие «Разноцветные полоски». Сост.: Л. М. Кларина, 3. А. Михайлова, И. Н. Чеплашкина. — СПб., 2001); блокиДьенеша; на-стольно-печатные дидактические игры; головоломки; логико-математические задачи (игры); счеты (вертикальные и горизонтальные); кубики с цифрами и знаками. Эти учебные пособия и материалы наиболее эффективны при освоении дифференциров-ки количественных групп, группировке объектов по свойствам с выделением количественных отношений, порядковом и количественном счете, абстрагировании числа, соотнесении цифры, числа и количества, воспроизведении по числу, сравнению, измерению, увеличению и уменьшению на числах.
Преимущество в развитии числовых представлений детей дошкольного возраста принадлежит игре: индивидуальной, совместной (ребенок — взрослый, ребенок — ребенок), специально организованной (занятия Оправдано при этом использование жизненных материалов: листьев, камешков, гальки, предметов быта, монет. Играя, дети обнаруживают, что одновременно можно взять в руку то большее количество камешков, то меньшее, задумываются над таинственностью явления, положенного в основу народных игр с камешками.
Палочки Кюизенера и логические блоки Дьенеша как полифункциональные дидактические средства
На начальном этапе освоения детьми 3—4-х лет цветных счетных палочек важно создать условия для свободной группировки их, сравнения по длине (высоте), сооружения из них построек. При обучении детей 2—4-х лет уместно использовать «Разноцветные полоски» (см. илл. 7 цв. вкладки), деленные на единицы и обеспечивающие восприятие количественного значения каждой палочки в зависимости от ее цвета и длины.
Следует обратить особое внимание детей на группировку по цвету. Это ведет к пониманию того, что одинаковые по цвету палочки имеют одинаковую длину и наоборот. Палочки можно прятать и просить ребенка догадаться, какая именно палочка спрятана, подобрать недостающую, следующую в ряду. В ходе таких упражнений совершенствуются представления о свойствах и отношениях предметов, действия выбора необходимого элемента, практического сравнения по цвету, количеству; уточняется значение слов такой же, не такой, как, столько же; больше, чем; длиннее, короче; такой же длины и др. Используются приемы попарного соотнесения, увеличения и уменьшения палочек (рядов) по длине (добавить или убрать), поиска всех палочек, которые короче (длиннее), например, красной и т. д.
Цветные счетные палочки (см. илл. 8 цв. вкладки) используются с целью познания ребенком чисел и цифр, действий сложения и вычитания на основе состава чисел из двух меньших, измерения и т. д. В обучении детей от 4-х лет используются типовые приемы, такие как составление лесенок, отправление поездов (составление вагонов, укладывание груза), составление ковриков разнообразными способами. Считается общепризнанным, что использование цветных счетных палочек Кюизенера дает возможность избежать ограниченности представлений ребенка о единице как об отдельном предмете. Так, при практическом освоении состава числа 5 из двух меньших чисел ребенок познает, что это может быть 1 и 4, 2 и 3. В этом случае, например, 3 выступает в качестве одного предмета (голубой палочки), но по значению соответствует трем единицам. Накладывая белые кубики (каждый из них — число 1) на голубую палочку, ребенок практически убеждается в этом.
Примеры использования палочек с целью освоения сравнения по количеству и числу, счета
Палочки, обозначающие числа 2, 3, 4, 5, раскладываются на столе в ряд, но на некотором расстоянии друг от друга. Над каждой из них располагается соответствующая цифра (илл. 38).
Под каждой из палочек ребенок раскладывает такое же количество мелких предметов. Уточняется значение слов столько же, тоже два, назначение цифр, обозначающих как числовые значения палочек, так и количество отдельных предметов.
Каждая из палочек сопоставляется с соответствующим количеством белых кубиков (единиц). Уточняется количественное значение каждой из палочек (числа), ее состав из единиц. Дети упражняются в сосчитывании, соотнесении числа и цифры.
С целью познания детьми последовательности чисел натурального ряда (порядка следования — прямого и обратного), места каждого числа в этом ряду путем выделения отношений (какое из сравниваемых больше на единицу или меньше какого числа); развития умения пользоваться порядковым счетом и отличать его от количественного широко используется прием составления из палочек числовых лесенок. Лесенки составляются по-разному. Самой простой является лесенка, составленная слева направо на плоскости. По ней удобно «шагать», используя маленькую игрушку, сосчитывать ступеньки, оставлять на время игрушки на какой-либо ступеньке и находить ее на второй, пятой и т.д.; обозначать цифрами номер каждой ступеньки, спускаясь по ней, осваивать умения называть числа в обратном порядке. Например, спускаясь с четвертой на третью ступеньку, с третьей — на вторую, со второй — на первую, затем на пол, ребенок познает количественное и порядковое значения числа.
Составление двусторонней лесенки (подъем и спуск) способствует большему разнообразию в упражняемое™ детей. Например, при подъеме на лесенку (или спуске) зайчик остановился на 6-й ступеньке, а лиса — на 7-й. После сравнения с целью определения места каждого из них — кто выше, кто ниже — выясняется порядковый номер каждой из ступенек, на сколько ступенек надо подняться или спуститься и кому, чтобы оказаться вместе. Дети практически познают отношения между числами (больше, меньше на один), способ получения большего или меньшего на единицу числа, значение слов до, после.
Прием составления ковриков предназначен для освоения детьми состава чисел из двух меньших и действий сложения й вычитания. Коврики можно составлять свободно, выравнивая левую и правую стороны, можно по условию. Например, так, чтобы каждая полоса состояла из палочек одного цвета; из ограниченного количества палочек; из разноцветных палочек; чтобы в составе одного ряда обязательно была розовая палочка и т. д.
Дети в каждом отдельном случае объясняют способ составления числа, выделяют меньшие числа, из которых оно составлено, выражают зависимость чисел в цифрах, предлагают другие варианты. Педагог советует ребенку представить все случаи состава числа, пользоваться при этом другими учебными пособиями и материалами: карточками, игрушками, одноцветными палочками, контурами домов (прием — заселение нового дома, илл. 39) и др.
Дом красной семейки Дом желтой семейки
Илл. 39. Игра «Заселяем дома» (из пособия «На золотом крыльце»)
Упражняемость детей в выполнении различных действий с цветными счетными палочками Кюизенера помогает ребенку абстрагировать число, выделить его как таковое, что ведет к осуществлению простейших операций с числами: увеличение и уменьшение, отсчитывание и присчитывание, счет группами (парами, по 3) с целью определения общего количества, «запись» с помощью цифр, знаков сложения и вычитания процесса и результата действий с использованием карточек.
Блоки Дьенеша, представленные 48 объемными геометрическими формами или 24 плоскими, используются с целью обучения детей группировке, а позже — классификации. Дети в заданной взрослыми интересной мотивированной деятельности объединяют блоки, одинаковые по цвету; цвету и форме; форме и размеру, обозначают количество числом и цифрой.
В таких упражнениях для сравнения по количеству и числу удобно пользоваться линиями, шнурами, когда начало и конец линии обозначают пару предметов. Дети обводят линией круглые блоки, выделив их из общего количества; выделяют только 5 блоков по каким-либо свойствам; только те, которых больше, чем остальные, и «переносят» их в квадрат, но уже в виде точек.
Педагог стимулирует содержательные самостоятельные игры и упражнения детей с блоками, включающие изменения групп предметов по количеству, цвету, форме, размеру, толщине.
Резюме
Общая последовательность развития представлений о числе в период дошкольного детства состоит в переходе ребенка от восприятия множественности (много) и возникновения Первых количественных представлений (два, один, много, мало) через овладение способами установления взаимнооднозначного соответствия (столько же, сколько; больше, чем; меньше, чем) к осмысленному счету и измерению. Постепенно осваиваемое ребенком умение считать к 4—5 годам совершенствует процесс познания им окружающего мира и его самого как активного деятеля.
Осознанное представление о числе возникает у ребенка в результате понимания им количественных отношений, чему способствует абстрагирование числа от конкретных предметов (Г. С. Костюк).
Усвоение отношений между числами основывается на осознании общей последовательности чисел от меньшего к большему, понимании и применении принципа образования чисел в практической деятельности.
По мнению психолога Н. А. Менчинской, для выполнения арифметических действий необходимо глубокое и уверенное владение рядом чисел.
Выбор и разработка технологий развития числовых представлений у детей основывается на принципе интеграции разных видов деятельности, полифункциональности и воздействия как на познавательное развитие ребенка, так и его личностное становление в целом, вхождение его в социокультурную среду.
Литература
БелошистаяА. В. Формирование и развитие математических способностей дошкольников. Курс лекций. — М.: Владос, 2004.
Ерофеева Т. И., Павлова Л. И., Новикова В. П. Математика для дошкольников: Книга для воспитателя детского сада. — М.: Просвещение, 1992.
3. Математика до школы. / Авт.-сост.: А. А. Смоленцева, О. В. Суворова и др.- СПб.: ДЕТСТВО-ПРЕСС, 2006.
Носова Е. А., Непомнящая Р. Л. Логика и математика для дошкольников.— СПб.: ДЕТСТВО-ПРЕСС, 2007.
Смоленцева А. А., Суворова О. В. Математика в проблемных ситуациях для маленьких детей.— СПб.: ДЕТСТВО-ПРЕСС, 2004.
Смолякова О. К., Смолякова Н В. Математика для дошкольников: В помощь родителям при подготовке детей 3—6 лет к школе. — М.: Издат-школа, 1992.
Харько Т. Г., Воскобович В. В. Сказочные лабиринты игры. Игровая технология интеллектуально-творческого развития детей 3-7 лет. - СПб., 2007.
Вопросы и задания для самоконтроля
© Объясните, почему ребенок, которого попросили сосчитать то, что есть у него дома, ответил: «Я ничего не могу сосчитать, всего по одному: стол, телевизор, шкаф...» В связи с чем возникла необходимость разработке методики познания детьми чисел в взаимосвязи и на основе освоения ими свойств и отношений предметов, что составляет предпосылки сложного процесса развития количественных представлений? Используйте для обоснования результаты исследований 3. Е. Лебедевой, Е. А. Тархановой.
© Решает ли использование стихов, потешек (с числами, цифрами, счетом) проблему развития числовых представлений у детей?
© Разработайте рекламу вымышленного учебно-игрового пособия, игры для детей дошкольного возраста. Укажите критерии оценки.
© Какое из современных учебно-методических пособий наиболее привлекательно для вас? Представьте обоснование.
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников