logo
Михайлова З

Зависимость восприятия численности от пространственно-качественных особенностей множеств

На восприятие детьми численности оказывают влияние раз­личные качественные и пространственные свойства предметов: способ расположения предметов в пространстве, размер занимае­мой ими площади, длина и плотность ряда предметов, размер, цвет, форма, назначение. Это свойственно в основном детям младшего дошкольного возраста (2—4 года) и объясняется недиф-ференцированностью восприятия, недостаточно развитой спо­собностью абстрагироваться от несущественного при восприятии и оценивать количество по заданному признаку. При восприятии и воспроизведении у детей множеств доминируют наиболее яркие признаки (цвет, расположение). Опознавательным признаком на данном уровне является не количество, а однородность по цвету, форме, пространственному расположению.

В зарубежной и советской психологии эта особенность вос­приятия детьми количества нашла отражение в работах Ж. Пиаже, Л. Ф. Обуховой.

Л. Ф. Обухова выявила последовательность освоения детьми принципа сохранения количества. От отсутствия понимания со­хранения, когда видимое выдается за действительное, дети пере­ходят к пониманию сохранения на небольших количествах и к полному признанию сохранения количества (инвариантности), неизменности количества при различных его видоизменениях.

Для понимания независимости количества предметов от их несущественных свойств необходимо осмысление детьми проти­воречий между внешними признаками предметов, познаваемы­ми визуально, и числовыми, познаваемыми на основе счета. По мнению Ж. Пиаже, это выражается в усвоении идеи числа сле­дующим образом: число объектов в группе «сохраняется» неза­висимо от того, как их растасовать или расположить (Пиа­же Ж. Как дети образуют математические понятия // Вопросы психологии, 1966, №4).

В работах психологов и математиков-методистов выявлена также зависимость воспроизведения детьми количества от спосо­ба расположения предметов в пространстве: линейного и в виде числовой фигуры (числовая фигура — карточка, на которой опре­деленное количество точек расположено удобным для восприятия способом).

Расположение предметов в виде числовой фигуры в большей мере, нежели линейное, способствует восприятию множества как целостного единства, но затрудняет восприятие отдельных эле­ментов.

Наблюдения за детьми позволяют сделать вывод о том, что множество, изображенное в виде числовой фигуры, действитель­но воспринимается как единое замкнутое целое, но точное коли­чество его элементов не воспроизводится. Однако в этот же пери­од численность линейно расположенного множества начинает воспроизводиться адекватно. Из этого следует, что чем младше дети, тем большее значение для восприятия количества приобре­тает линейное расположение предметов. Пользуясь приемом на­ложения пуговиц на рисунки, дети уже в возрасте трех лет точно воспроизводят количество предметов, если они расположены в ряд.

Резюме

W« Ребенок дошкольного возраста активно осваивает числа в си­туациях непосредственного использования результатов счета, сравнения в значимых для него видах деятельности: игре, вы­полнении аппликаций, играх-экспериментированиях с водой и песком.

Познание количественных и числовых отношений — длитель­ный процесс. Постепенное осознание числа как показателя количества состоит в «узнавании» количества без счета; отне­сении числа к количеству на основе сосчитывания, использо­вании ряда чисел на основе выделения отношений между ними. Многое из этого осваивается ребенком путем подража­ния действиям и речи взрослого, старшего ребенка в семье. Из краткой характеристики основных теоретических положе­ний, на которых базируется конструирование технологий, способствующих освоению детьми дошкольного возраста чисел и цифр, следует необходимость осознания педагогом выбора и применения наиболее эффективных и значимых в конкретных педагогических условиях методик и технологий.

®" Исторически сложившееся в методике первоначального обу­чения арифметике расхождение во взглядах на вопрос «С чего начинать?

отражено в изложенных концепциях. Ответом может быть: с познания свойств предметов, с действий с мно­жествами, с числа, с измерения и т. д.

W° Предложенная в данном учебном пособии методика развития у детей количественных и числовых представлений основыва­ется на синтезе идей и взглядов разных исследований.

Литература

  1. Брушлинский А. В. Некоторые вопросы детского мышления в условиях освоения счета / Теории и технология математического развития детей дошкольного возраста. Сост.: З.А.Михайлова, Р. Л. Непомнящая, М. Н. Полякова.— М.: Центр педагогического образования, 2008.

  2. Гальперин П. Я., Георгиев Л. С. Формирование начальных ма­тематических понятий. Там же.

З.Данилова В. В. Особенности понимания количественных от­ношений совокупности детьми 2—3-х лет. Там же.

  1. Лебединцев К. Ф. Современные педагогические исследова­ния в области вопросов, связанных с методикой начальной мате­матики. Там же.

  2. Леушина А. М. Развитие представлений о множестве в ран­нем детстве. Там же.

  1. Менчинская Н. А. Пути формирования первоначального по­нятия о числе у детей до школы. Там же.

  2. Смолякова О. К., Смолякова Н. В. Математика для дошколь­ников: В помощь родителям при подготовке детей 3—6 лет к школе.— М.: Издат-школа, 1992.

  3. Чуприкова Н. И. Начальные этапы развития счета / Теория и технология математического развития детей дошкольного воз­раста. Сост.: 3.А. Михайлова, Р.Л. Непомнящая, М.Н.Поляко­ва. — М.: Центр педагогического образования, 2008.

Вопросы и задания для самоконтроля

© Почему Г. С. Костюк назвал «компромиссным» подход К. Ф. Лебединцева к развитию у детей числовых представле­ний?

© Выскажите свое отношение к мысли Т. Леви о том, что ребе­нок различает количество привычных предметов задолго до того, как научится говорить.

© Ответьте на вопрос ребенка пяти лет: «Число 7 бежит впереди шестерки? Да?»

© Скорректируйте высказывание мамы: «Мой Саша (6 лет) уже считает до 50. Я так рада!»

© Какие основные особенности ребенка-дошкольника надо учитывать в процессе освоения им чисел, цифр, количествен­ных отношений? (По результатам исследований Н. И. Непом­нящей, П. Я. Гальперина, А. М. Леушиной.)

© Возможно ли использование методического приема «Матема­тика за окном»? Если да, раскройте методику использования в детском саду и семье.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4