Основные идеи порядковой теории натуральных чисел
В конце XIX в. была построена порядковая теория натуральных чисел, которая обычно связывается с именем итальянского математика Джузеппе Пеано (1858—1932), построившего эту теорию на аксиоматической основе.
Весьма развитый в математике аксиоматический подход к построению теорий состоит в следующем: а) выделяются некоторые исходные, неопределяемые через другие понятия; все остальные понятия теории определяются через ранее уже определенные; б) выделяются некоторые исходные предложения, или аксиомы, истинность которых принимается без доказательства; все остальные предложения теории — теоремы — логически выводятся или доказываются с использованием введенных понятий, ранее доказанных фактов, теорем.
Отметим, что аксиоматический подход применяется для построения теории, о которой уже имеются определенные, сформированные интуитивные представления. Иначе говоря, осуществляется аксиоматизация уже имеющейся «предматематической теории».
Подход к построению теории натуральных чисел, берущий начало от Пеано, представляет собой определенный способ математизации интуитивного представления о натуральном ряде.
Математизация этого интуитивного понятия приводит к определению натурального ряда как некоторой структуры (T, 1,'), состоящей из: а) множества N, элементы которого называются натуральными числами; б) выделенного в этом множестве элемента, обозначаемого знаком 1 и называемого единицей; в) определенного в множестве ТУотношения «непосредственно следует за» (число, непосредственно следующее за числом*, обозначим черезх\ т. е. если у непосредственно следует за х, то у=х'; у! — «сосед справа» для х).
Натуральный ряд обладает следующими интуитивно ясными свойствами (принятыми Пеано в качестве аксиом, характеризующих эту структуру).
I. Единица непосредственно не следует ни за каким натуральным числом, т. е. не является «правым соседом» никакого другого натурального числа, это «первое» натуральное число.
П. Для любого натурального числа существует одно и только одно непосредственно следующее за ним натуральное число, т. е. любое натуральное число имеет только одного «правого соседа».
III. Любое натуральное число непосредственно следует не более чем за одним натуральным числом, т. е. единица не следует ни за каким, всякое другое натуральное число — точно за одним.
Всякое натуральное число, кроме единицы, является «правым соседом» одного и только одного натурального числа, его «левого соседа».
I. Если какое-нибудь множество М натуральных чисел (Л/c/) содержит 1 и вместе с некоторым натуральным числом х содержит и натуральное число х1', непосредственно следующее за х, то это множество совпадает с множеством всех натуральных чисел (M=N).
Предложение I, хотя по своему содержанию более сложно, чем первые три, также выражает достаточно простое свойство: с помощью последовательного прибавления единицы, начиная с единицы, можно получить все натуральные числа. Всякий раз, когда мы доходим до некоторого числа х, допускается возможность написания непосредственно следующего за ним числа х?.
Натуральный ряд в описанном представлении мыслится потенциально бесконечным. С этой точки зрения процесс его образования незавершаем, предполагается лишь, что после каждого шага процесса мы располагаем возможностью осуществления следующего шага.
Свойства I—I характеризуют структуру «натуральный ряд» только с точки зрения отношения ', названного «непосредственно следует за». Но это построение можно дополнить свойствами, характеризующими операции сложения и умножения в множестве N.
Расширим систему свойств I—I таким образом, чтобы получить характеристику структуры (N, 1,', +, •).
Знак + обозначает операцию «сложение», сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число х+у, называемое их суммой и обладающее следующими свойствами:
т. е. сумма любого натурального числа х с числом 1 равна непосредственно следующему за х числу хЛ I. Х+у'=(х+у)',
т. е. сумма любого числа х с числом у', непосредственно следующим за любым числом у, равна числу, непосредственно следующему за суммой х+у.
Знак • обозначает операцию умножения, сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число х»у, называемое их произведением и обладающее следующими двумя свойствами: II.x»l=x,
т. е. произведение любого натурального числа х и числа 1 равно числу х (умножение какого-нибудь числа на единицу не меняет это число).
III. х»(У)=(х»у)+х, т. е. произведение числа х на число, непосредственно следующее за числом у, равно произведению чисел х и у, сложенному с числом х.
Из свойств I—III выводятся все остальные свойства порядка и операций сложения и умножения натуральных чисел.
Покажем в качестве примера, как, исходя из перечисленных свойств, можно получить таблицу сложения.
Будем исходить из знания того, что непосредственно следующее число за каждым однозначным числом уже получено:
Г=2; 2'=3; 3'=4; 4'=5; 5'=6; 6'=7; 7'=8; 8'=9; 9'=10.
Исходя из свойства , получаем таблицу «прибавления единицы»:
1 + 1=1'=2;
2+1=2'=3;
3+1=3'=4;
9+1=9'= 10.
Теперь, зная таблицу и используя свойство I, можем вывести, например, чему равно 2+2:
2+2=2+1'=(2+1)'=3'=4.
Аналогично 3+2=3+Г=(3+1)'=4'=5 и т. д.
Как видно, в описанном построении теории натуральных чисел основную роль играет операция (функция) прибавления единицы
/(х)=х+1,
сопоставляющая с каждым числом х непосредственно следующее за ним число х+1 (илихО- Эта идея используется в обучении счету маленьких детей.
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников