3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
Там, где есть закономерность, там есть и смысл.
У. У Сойер
Осуществляя целенаправленное различение, называние, упорядочивание и сравнение свойств, ребенок учится устанавливать взаимосвязи относительно признаков форм, количеств и выражать их с помощью языковых средств. При определении взаимосвязей дети дошкольного возраста опираются в основном на собственный опыт, который, однако, организуется взрослыми.
Когда речь идет об обучении дошкольников, имеется в виду не прямое обучение логическим операциям и отношениям, а подготовка детей посредством практических действий к усвоению смысла слов, обозначающих эти операции и отношения.
По своему содержанию эта подготовка не должна исчерпываться только развитием математических представлений. С точки зрения современной концепции обучения самых маленьких детей не менее важным, чем арифметические операции, является развитие элементов логического мышления. Детей до школы необходимо учить не только вычислять и измерять, но и рассуждать.
В развитии элементов логико-математического мышления ребенка есть важная граница, которую большинство детей переходят между 5 и 8 годами, — понятие о сохранении. Понимание сохранения количества создает предпосылку для формирования понятия о количественном числительном.
Понятие о сохранении требует осознания детьми того факта, что определенные свойства (например, количество, масса) не меняются при изменении других свойств (плотности расположения элементов, формы).
Всемирно известный швейцарский психолог Жан Пиаже обоснованно считал, что понимание сохранения объекта в процессе изменения его формы составляет важное условие всякой рациональной деятельности, необходимое условие математического мышления.
Процедура постановки задач Пиаже на сохранение следующая. Ребенку показывают два совершенно одинаковых предмета или два совершенно одинаковых набора предметов (два одинаковых шарика или две одинаковых колбаски из пластилина; два одинаковых стакана, заполненные одинаковым количеством воды; два ряда, содержащие одинаковое количество каких-либо предметов; две одинаковые палочки, расположенные параллельно и так, что их концы совпадают; два одинаковых предмета одинакового веса). Ребенка просят оценить количество пластилина в объектах, воды в стаканах, предметов в рядах, массы объектов и длины палочек.
После того как правильная оценка получена, экспериментатор на глазах у ребенка трансформирует один из стимулов: раскатывает, сжимает или расплющивает один из кусочков плаотилина, переливает воду из одного из стаканов в стакан другой формы и размера, раздвигает или приближает друг к другу объекты в одном из рядов, сдвигает палочки так, что совпадение их концов нарушается. То есть сначала показываемые ребенку объекты одинаковы по всем своим свойствам, а после трансформации — только по одному из свойств, сохранение которого проверяется (количество пластилина в кусочках; длина палочек, количество предметов в рядах). Что же касается других свойств, то теперь их значения в двух объектах становятся разными. Эти различия могут быть описаны как различия по форме и пространственным отношениям, а более детально — как различия по элементам формы — по длине, толщине, высоте, ширине, конфигурации, плотности объектов в рядах, взаимном расположении предметов и рядов. После этого ребенка опять просят оценить равенство или неравенство объектов по тем же свойствам, равенство которых признавалось до трансформации. Если теперь ребенок отрицает равенство по тем свойствам, которые не изменялись при трансформации, то такой ребенок «не сохраняет» количество, длину, вес.
Например, вы можете показать ребенку два равных ряда бусинок и спросить, одинаковы ли они. Если ребенок понимает, о чем вы спрашиваете, он ответит «да» (илл. 40).
Если затем изменить один ряд так, как показано на илл. 41, и спросить, остались ли ряды одинаковыми или в одном ряду стало больше бусинок, ребенок может ответить, что в длинном ряду бусинок больше. Это означает, что он не обратил внимания на неизменность количества бусинок и использовал длину ряда в качестве ключа.
Ребенок, начинающий овладевать понятием сохранения количества, скажет, что оба ряда имеют одинаковое количество бусинок, потому что в рядах по 5 бусинок — или просто потому что ничего не добавили и не убрали. Ребенок, владеющий понятием сохранения, скажет, что в обоих рядах находится одинаковое количество бусинок, независимо от того, что сделает воспитатель — расположит их определенным рисунком или разложит на кучки.
Аналогичным образом проводится опыт с водой или другой жидкостью. Ребенку показывают две одинаковые банки с жидкостью, а затем переливают жидкость одной из них в высокую узкую или в широкую банку ил и в две меньшие банки. Если ребенок усвоил понятие сохранения вещества, он скажет, что после переливания в другой банке содержится такое же количество жидкости.
Можно сделать два равных шарика из пластилина, а затем раскатать один из них в жгутик или превратить его в блинчик или же в два шарика меньших размеров. Ребенок, освоивший понятие сохранения, способен понять, что в нераскатанном и в раскатанном шарике одно и то же количество пластилина при условии, что ничего не добавили и ничего не убавили.
Таким образом, сущность сохранения проявляется в ситуациях преобразования объектов. Сначала предъявляемые ребенку объекты одинаковы по всем своим свойствам, а после трансформации — только по одному из свойств, сохранение которого проверяется.
Сохранение количества дискретных твердых предметов (бусин, пуговиц, чашек) в наборе можно установить счетом. При этом можно менять взаимное расположение элементов, составляющих набор, но не сами эти элементы. Деформируемые, непрерывные материалы (жидкости, глина, бечевка, резиновая лента) не поддаются счету. Меру им можно придать только с помощью измерительных устройств: линеек, весов, градуированных емкостей и др. Вот почему раньше приобретается понятие о сохранении количества вещества, затем — массы и в последнюю очередь — объема.
Ж. Пиаже определил три последовательные стадии в развитии у детей способности к сохранению.
Первая стадия (стадия несохранения) — это глобальное качественное сравнение. На этой стадии параметр (масса, количество, размер) еще не отделяется ребенком от других свойств предмета. Поэтому дети, например, не способны подобрать столько же элементов, сколько их содержится в предъявленном множестве. Они приблизительно воспроизводят общую форму предъявленной совокупности, тогда как количество объектов во второй совокупности может быть большим или меньшим, чем в первой. Например, линейные ряды копируются по их длине, независимо от плотности элементов в ряду.
На этой стадии дети утверждают, что количество вещества, его вес и объем изменяются при изменении формы глиняного шарика или сосуда, в который переливается вода или пересыпаются бусины. Если шарик превращается в более длинную колбаску, они говорят, что в нем стало больше глины, что он стал тяжелее и что вода в сосуде, в которую его опустят, поднимется выше. Если воду перелили в более высокий и тонкий сосуд так, что ее уровень стал выше, чем в стандартном, дети говорят, что в новом сосуде воды стало больше и т. п.
Таким образом, на первой стадии ребенок может правильно оценить объект только в конкретной ситуации на основе непосредственного восприятия предметов.
Вторая стадия развития (неустойчивое сохранение) характеризуется неустойчивостью ответов и тем, что дети утверждают сохранение количества, величины при незначительных трансформациях объектов и отрицают сохранение при больших трансформациях. Например, когда произведенная трансформация формы глиняного шарика невелика или когда второй сосуд не очень отличается от стандартного, дети говорят, что вещества (массы, объема) осталось столько же. Но когда трансформация формы более значительна, вновь даются ответы о несохранении. На этой стадии старший дошкольник способен отвлекаться от наиболее ярких свойств и может оценивать отношения между предметами на основе менее заметных, скрытых свойств, т. е. опосредованно. Например, он уже знает, что раздвинутые пальцы ладони хотя и занимают больше места в пространстве, чем сжатые кулаки, но между ними при этом увеличивается лишь расстояние.
Наконец, на третьей стадии (стадии сохранения) дети уверенно проявляют понимание сохранения при любых трансформациях. Дети, находящиеся на этой стадии, ясно понимают, что количество элементов в двух совокупностях остается одинаковым, как бы экспериментатор ни изменял форму и площадь созданных ими конфигураций.
Усвоение понятия сохранения тесно связано с общей способностью ребенка мыслить и рассуждать, дифференцировать разные свойства и избирательно оперировать каким-либо из них, абстрагируясь от других. Дифференциация разных свойств, умение выразить их в речи — длительный процесс, растягивающийся на годы.
Вначале, когда такой дифференциации нет, восприятие объектов интегрально, и столь же интегрально представлены свойства в высказываниях детей. Отсюда — все феномены несохранения, характерные для первой стадии. Количественные свойства объектов (количество вещества, масса, объем) еще не выделены в восприятии и в речи из их общей формы, слиты с ней. При этом в силу глобальности и малой расчлененности самой формы, как в восприятии, так и в высказываниях, при оценке и сравнении количеств принимается во внимание только наиболее резко выступающие, «бросающиеся в глаза» качества формы: длина колбаски или площадь поверхности, высота столбика воды в сосуде*. По этим свойствам выносятся первые грубые суждения детей: больше, меньше, равно. Менее выступающие и меньше бросающиеся в глаза особенности формы, такие как толщина колбаски и глиняной лепешки (когда она невелика и явно меньше высоты), не оказывают влияния на суждения о величине.
В дальнейшем, когда восприятие и речь детей становятся более дифференцированными, они могут сравнить величины
е по одной, но по разным особенностям формы. Отсюда возможность неустойчивых рассуждений. Вместе с тем, когда определенное количество уже начинает выделяться из «упаковки», не очень большие изменения формы могут не сказываться на оценках величины, в отличие от значительных ее трансформаций. Отсюда — еще один источник неустойчивости рассуждения детей на второй стадии. Только на третьей стадии в результате длительного процесса «освобождения» от внешних несущественных признаков количество становится инвариантным при любых изменениях формы, что обеспечивает его устойчивое сохранение.
Проведенное Л. Ф. Обуховой и П. Я. Гальпериным исследование показало, что развитие умения выделять в сравниваемых объектах разные свойства и каждое из них измерять с помощью какой-то избранной мерки представляет собой необходимое условие для формирования у детей полноценного знания о принципе сохранения.
Американский психолог Дж. Брунер установил, что если 5— 6-летних детей, не обнаруживших понимания принципа сохранения, тренировать в обратном преобразовании предмета, например из «колбаски» снова сделать шарик, и при этом ставить перед ребенком вопрос «Получились одинаковые шарики?», то после серии таких тренировок у большинства детей обнаруживается понимание принципа сохранения, т. е. они переходят с первой на третью стадию развития познавательной способности оценки величин и количеств.
Все эти факты свидетельствуют о том, что целенаправленное обучение способствует освоению понятия сохранения дошкольниками. Основной путь в таком обучении — развитие умения дифференцировать разные свойства, что достигается через развитие у детей действия сравнения, освоение ими операций сериации и классификации. Овладение счетом и измерением также способствует развитию понимания сохранения количества, величины.
Как отмечают многие исследователи, обучая сохранению, важно создавать ситуации, в которых ребенок оказывается в познавательном конфликте. Например, если ребенок склонен полагать, что удлинение шарика увеличивает количество пластилина, а убавление (отщипывание) кусочка уменьшает его количество, необходимо произвести сразу и одну, и другую операции. Это заставит ребенка колебаться между взаимно конфликтующими стратегиями, более внимательно оценивая ситуацию.
В процессе усвоения понятия сохранения детей и активно входят в практику образовательного процесса благодаря развитию метода обучения ТРИЗ — Теории Решения Изобретательских Задач. Творческие задачи (вопросы, ситуации) имеют много решений (которые будут правильными), но не имеют четкого алгоритма (последовательности) решения. Эти средства прежде всего направлены на развитие смекалки, сообразительности, воображения, творческого (дивергентного) мышления как важного компонента творческих способностей. Они способствуют переносу имеющихся представлений в иные условия деятельности, а это требует осознания, присвоения самого знания. В процессе решения творческих задач ребенок учится устанавливать разнообразные связи, выявлять причину по следствию, преодолевать стереотипы (которые уже начинают складываться), комбинировать, преобразовывать имеющиеся элементы (предметы, знания, вещества, свойства). Но самое главное — в процессе решения таких задач ребенок начинает испытывать удовольствие от умственной работы, от процесса мышления, от творчества, от осознания собственных возможностей.
Yandex.RTB R-A-252273-3- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников