Развитие у детей представлений о форме в процессе игр и упражнений
Опыт восприятия формы предметов и геометрических фигур накапливается детьми в играх с предметами и мозаиками, в процессе манипулирования разнообразными геометрическими фигурами, при составлении «картинок» на плоскости, в ходе сооружения построек из строительного материала, создания конструкций из модулей и т. д. В играх с влажным песком дети успешно овладевают формообразующими действиями.
Педагогически целесообразно уже в младшем дошкольном возрасте совместно с детьми выделять (называть, показывать) геометрические фигуры (эталоны) как таковые и находить им подобные предметы в окружающем мире: «Вот — круг, а это — круглое блюдце, круглое кольцо, обруч».
Как известно из теории сенсорного воспитания, это наиболее эффективный путь познания свойств предметов. Необходимо создать для детей среду, в которой геометрические фигуры и силуэты, из них воссозданные, привлекали бы ребенка к практической деятельности, а иногда и просто к рассматриванию, обведению рукой. Например, можно на стене (на уровне детских глаз) поместить в меру красочное, но динамичное панно с изображением уголка леса и его обитателей. Педагог акцентирует внимание детей на расположении, формах, размерах объектов. Называет свои действия, свойства предметов, побуждает к тому же и детей. Например: «Я составила башню из квадратов, а ты можешь составить из кубиков». В данном случае педагог акцентирует поиск ребенком простых адекватных действий. Но одно из них выполняется в двухмерном, а другое — в трехмерном пространстве.
Самой доступной детскому восприятию формой является круг (шар). Глаз как бы «скользит» по его контуру (поверхности), не встречая преград. Игры с шаром и кругом разнообразны. Например, воспитатель вместе с детьми готовит машину к выезду из гаража: они обследуют колеса и содержимое кузова. Находят неисправности и предметы-заместители.
Использование логических блоков Дьенеша и разнообразных игровых упражнений с ними, разноцветных модулей помогает маленькому ребенку ориентироваться в многообразии свойств предметов. Имея необходимый опыт, дети на основе соотнесения предметов по форме, форме и цвету, размеру и форме создают несложные конструкции практического назначения. Все игровые и результативные действия сопровождаются словами: такой же, не такой, как.., другой, первый, последний и т.д. Это помогает детям определить идентичность предметов либо различия в их свойствах.
К трем годам дети овладевают простыми предметно-познавательными действиями: соотнесение, выбор, сравнение, воссоздание, простейшие преобразования и изменения. Они раскладывают фигуры в заданной последовательности: шар, куб, шар..; нанизывают бусы (из крупных предметов); составляют башенки из кубов, плоские картинки из кругов или квадратов разного размера, елки — из треугольников.
Дети привлекаются к участию в опытно-экспериментальной деятельности: катают шары и цилиндры; изменяют формы, вылепленные из влажного песка; прогнозируют действие «упадет — не упадет» (в конструктивных играх); чередуют формы; по имеющимся сгибам складывают кубики из разверток; подбрасывают игральные кубики.
Наиболее распространенные и полезные упражнения и игры:
«Дай Мишке такой же большой и круглый мяч, как у куклы, и научи его играть!»;
«Возьми такие же кубики и построй из них площадку»;
«Найди пару» (подбери второй предмет, такой же как этот);
«Игры с рамками-вкладышами» М. Монтессори;
«Составь картинку» (снеговика, домик, лодку);
«Выбери фигуры» (по указанному свойству);
«Собери квадрат», «Сложи узор», «Уникуб», «Уголки» и др.
В 3—4 года дети активно используют геометрические формы в самостоятельных играх, зрительно сравнивают и сопоставляют их. Накладывая одну фигуру на другую (круг — на квадрат, куб — на квадрат, круг — на треугольник и т. д.), ребенок познает их отличия либо сходство. Сложность речевого высказывания при этом заменяется показом ребенком того, что «лишнее» в одной из сравниваемых фигур.
Умение различать, сравнивать фигуры совершенствуется в этом возрасте через овладение обследованием их контура. В специальных упражнениях дети овладевают соответствующими движениями кончиками пальцев руки по контуру плоской фигуры, поверхности объемной. Постепенно начинают выделять основные структурные элементы, сначала — стороны, затем — углы.
С целью развития умений воспринимать фигуры уместны упражнения на совмещение фигур с контуром, вкладывание их в выемки (абрис).
Количество познаваемых ребенком фигур зависит от его индивидуальных возможностей. Как правило, дети называют и используют в практической игровой деятельности круги, квадраты, треугольники, шары, цилиндры, кубы, а также призмы, прямоугольники и др. С целью оптимизации процесса освоения и применения в разных видах деятельности знаний об эталонах используется такой прием, как обведение карандашом моделей фигур, колец, обручей. Дети образуют окружности и круги; из замкнутых ломаных линий — квадраты, треугольники. С этой же целью используются и трафареты. Дети лепят геометрические фигуры из глины и пластилина, чертят пальцем на песке, складывают из палочек, шнурков, камешков и т. д.
Сравнивая модели фигур, дети накладывают (прикладывают) их по сторонам, граням, пытаясь выявить сходства или различия. При этом используются разнообразные фигуры, разных размеров и цветов. Также дети составляют целое (картинки, силуэты) из частей, определяют количество этих частей, их размеры и формы; рассказывают, что получилось, и называют картинки.
Группируя геометрические фигуры, дети выделяют все круглые и не круглые; те, что могут и не могут катиться, с уголками и без; те, из которых можно собрать башенку (построить дорожку), и те, из которых нельзя и т. д. С этой целью детям предлагаются наборы геометрических фигур разного размера, цвета, формы. Они учатся ориентироваться на одно из свойств, 2 или 3 свойства одновременно.
Так дети осваивают простые зависимости между фигурами по структуре, назначению, использованию в играх. Дети начинают понимать логические задачи на продолжение ряда, нахождение пропущенной фигуры в ряду и др. Каждую задачу следует представить детям на предметной основе или в изображении и не торопить их с ответом. Необходимо учитывать, что детям четвертого года жизни требуется довольно длительное время (ориентировочная основа) для самостоятельного осмысления и принятия задачи.
Дети в результате игр и упражнений, простейших исследований к концу года овладевают предметно-познавательными действиями сравнения, составления пар, соотношения, группировки, видоизменения, воссоздания.
Дети охотно участвуют в исследованиях, направленных на изучение свойств геометрических фигур.
Узнавание геометрических форм по тени: «Что это? Какой предмет отбрасывает эту тень?» Самостоятельное расположение предметов с целью получения других теней.
Симметричное раскладывание кругов, треугольников и других форм, прослеживание изменений.
Складывание кубов, цилиндров из готовых разверток: «Когда получается куб?»
Упражнения на осевую симметрию. Например, на игровом поле «Мозаики» проводится линия (горизонтальная, вертикальная). С левой стороны кладется половина круга. Детей спрашивают: «Что получится, если такую же фигуру положить и справа?»
Игры с нерасцвеченными витражами. Лист любой формы расчерчен на геометрические фигуры. Нужно выбрать цвета и раскрасить фигуры. Свои действия дети сопровождают называнием геометрических фигур, обосновывают выбор цветов и порядок раскрашивания. В итоге педагог вместе с детьми обсуждает, почему у разных детей получились разные витражи. Приведем ряд соответствующих игр:
«Каждую фигуру — на свое место», «Закрой окошко», «Чудесный мешочек»;
«Сложи узор „Уникуб"», «Рамки-вкладыши» (с зарисовкой узоров и фигур);
«Собери квадрат», «Составь фигуру». Игры на объемное моделирование:
«Кубики для всех»;
«Уголки»;
«Игры с логическими блоками Дьенеша»;
Серия игр: «Геоконт», «Прозрачный квадрат», «Игровой квадрат» и др.
Детей 4—5 лет интересует многообразие форм в окружающем нас материальном мире. Они сравнивают их, выявляют отношения идентичности и подобия, эквивалентности, упорядоченности (транзитивности). Дидактические пособия, предлагаемые детям, реализуют их стремление к активной деятельности с геометрическими формами, оперированию одновременно несколькими свойствами. Это такие пособия, как наборы геометрических фигур и тел, логические блоки Дьенеша, специальные комплекты логических геометрических фигур, моделей, игры «Цвет и форма», «Форма и размер» и др.
Дети среднего дошкольного возраста выделяют в предмете то, что в нем является показателем и характеризуется в логике словами «свойство» или «признак». Для этого они пользуются сравнением, обследованием, изменением, перекладыванием, воссозданием и т. д.
В множество познаваемых фигур включаются овалы, призмы, четырехугольники, в том числе и невыпуклые. Представление о четырехугольнике (как обобщение) складывается на основе сенсорного обследования, сосчитывания и измерения длин сторон, определения углов и вершин. Перечисленные действия помогают ребенку сориентироваться в условиях проблемной ситуации, найти способ оценки форм фигур.
Уточняются представления детей о границах и плоскостях фигур; гранях и ребрах отдельных геометрических тел. Для этого дети закрашивают фигуры, склеивают их из разверток (по возможности), делают из проволоки, тонкого картона; выделяют в кубах квадраты. В этом возрасте дети учатся отвечать на вопрос «Что образует геометрическую фигуру?» Пытаются разобраться в прямых, кривых, ломаных линиях; «увидеть» их в предметах, а затем — и в геометрических формах. Важно в этом возрасте научиться зрительно выделять контур как опознавательный признак фигуры. С целью развития умения абстрагироваться, мыслить схематично используются модели (заместители) фигур, обозначающие форму, размер, цвет и другие свойства геометрических фигур и предметов. Дети кодируют свойства, что дает им основу для обогащения самостоятельных игр, развивает творческое воображение.
Дети пятого года овладевают умением устанавливать связи, зависимости, закономерности. Находят общее и отличное внутри группы треугольных, четырехугольных, округлых и других фигур. Устанавливают закономерности следования, включения фигур в группу, увеличения их количества, исключения их из группы; находят лишние и недостающие. Таким образом, дети могут включаться в решение более широкого круга логических задач и частично придумывать их. Для этого используются головоломки, задачи на преобразование, поиск недостающей в ряду фигуры, четвертой лишней и т. д.
Составляя фигуры, решая простые головоломки, дети убеждаются в том, что модели разных геометрических фигур можно создать из одного и того же количества палочек. Например, из 6 одинаковых палочек дети составляют прямоугольник; отсчитав еще 6 палочек — треугольник, затем — трапецию, вогнутый и выпуклый четырехугольники, цифру 4, стул и др
Дети убеждаются в том, что из одного и того же количества палочек можно сложить разные фигуры.
Освоив умения выделять и чертить прямые и кривые линии, ставить точки, дети уточняют их назначение в геометрических фигурах. В упражнениях на вычерчивание разных линий дети пользуются шаблонами, линейками, «уголками». Для получения линий (в том числе ломаных) можно использовать математические планшеты (илл. 28).
Детям этого возраста очень нравится применять свои знания и умения при определении форм окружающих предметов и их частей. Задавая детям вопрос «Что я вижу?», педагог повышает их самостоятельность, побуждает быть инициативными.
К концу среднего дошкольного возраста дети свободно пользуются разнообразными предметно-познавательными и логическими действиями: сравнение, воссоздание, деление на части,
группировка и классификация, сериация, преобразование и видоизменение, трансформация.
Исследуя совместно со взрослыми различные жизненные ситуации и явления, дети:
сами составляют силуэты геометрических фигур и дают им названия;
учатся отвечать на вопрос «Что это?» (предмет, рисунок, тень, отражение);
узнают геометрическую фигуру по ее тени;
изготавливают геометрический витраж по собственному чертежу;
составляют из геометрических фигур узор для обоев;
понимают, как изменяется геометрическая фигура в результате разрезания, складывания, деления на части; воссоздают ее вновь, получают другие фигуры из тех же частей;
У детей расширяется представление о разновидностях фигур, к ним относят: серп, звезду, сердечко, точку, линию, угол.
Дети моделируют геометрические формы: чертят их, создают из спичек (палочек) и пластилина, изображают схематически с помощью точек, вырезают, лепят и т. д.
В старшем дошкольном возрасте педагоги преследуют в основном следующие развивающие задачи.
Способствовать освоению детьми обобщений: «Все фигуры круглые, но разного размера», «Все фигуры — многоугольники, но среди них есть разные четырехугольники, треугольники, шестиугольники, разные по цвету и размеру».
Соблюдать логику при сравнении: выделять сходство по цвету, форме, размеру, пропорциональному соотношению сторон, конфигурации; затем — различия по тем же признакам. Осуществлять сравнение на наглядной основе, по представлению (словесному описанию); постепенно увеличивать количество сравниваемых между собой фигур; сравнивать группы фигур (4—6 объектов) между собой. Сравнивать с определенной целью (узнать, чем похожи), по условию (сравниваются только похожие фигуры), по конечному результату (выбираются те геометрические формы, которые подлежали сравнению). Чем старше дети, тем сложнее процедура, цель и результат сравнения. Повышение требований к детским ответам состоит в точности при назывании форм геометрических фигур и предметов, их сходств и отличий, предполагаемых изменений и их результатов.
Устанавливать связи и зависимости групп фигур; связи преобразования, видоизменения; отношения равенства (одинаковости) и неравенства, упорядоченности.
Успешно оперировать знаковыми системами (кодами) и схематическими изображениями. Использовать модели как средство более глубокого изучения геометрических форм и как способ отражения своих представлений.
Способствовать систематизации детских представлений в процессе упражнений на классификацию, сериацию, при практическом изготовлении геометрических форм, сравнении и противопоставлении.
Развивать умение создавать творческие экспозиции, отражая по-своему гармонию мира в цвете, разнообразии форм, пространственном размещении, сочетании и пропорциях. Для этого хорошо подойдут упражнения на составление орнаментов (см. илл. 2 цв. вкладки). Уместно также использовать приемы Развития Творческого Воображения (РТВ): «Фея Инверсия» (изменение значения свойства на противоположное), «Дели — давай» (деление на части и объединение), «Великан Кроха» (увеличение или уменьшение), «Замри — отомри» (преобразование предметов в подвижные и наоборот) и др. Составление загадок совместно с детьми способствует уточнению свойств объектов.
Осуществление действий с объектами вымышленного (воображаемого) мира развивает творческие способности детей, актуализирует потребность сравнивать, изменять, объяснять. Например, оказавшись на неизвестной планете, дети дают названия увиденным там геометрическим формам, предметам.
В исследовательской деятельности дети пользуются простейшими приборами для черчения, преобразования фигур, создания композиций. Эксперименты, организованные педагогом, переходят в самостоятельные, ведущие детей к открытию закономерностей. Например, детям предлагаются чертежи. Каждый из них находит способ «расцвечивания» фигур, составляющих сложный рисунок (илл. 31, 32). Дети задумываются над тем, как составить орнамент только из кругов, как разложить круги в треугольнике (илл. 33, 34)
Перечислим некоторые темы для детских исследований. «Легко ли быть паркетчиком?» Дети составляют паркеты. При этом используется игра «Маленький дизайнер» (выпускается ООО «Корвет», Санкт-Петербург).
«Геометрия вокруг нас!» Дети рисуют панно, составляют картины из фигур (например, витражи, начиная с произвольно выбранной фигуры и т. П
Можно ли выправить искривленную линию? А проволоку, полоску из бумаги?»
«Сколько прямых (кривых) линий можно провести через одну точку? Что при этом получится?»
«Какая форма получится, если от бумажной салфетки, сложенной пополам (вчетверо), отрезать угол?»
Резюме
^ С целью развития у детей дошкольного возраста представлений о формах важно поощрять их стремление к аналитическому восприятию окружающего мира: предметного, растительного, животного. Организовывать игровые упражнения на сравнение, противопоставление, составление загадок, придумывание сказок и историй с приключениями, «участниками» которых являются различные формы. Такие упражнения расширяют представления детей, развивают наблюдательность, глазомер, т. е. основные сенсорные способности. Углубление представлений о формах и овладение действиями соотнесения форм предметов и фигур способствует совершенствованию практических видов деятельности детей (рисования, создания аппликаций и другого ручного труда) и способствует формированию условий для установления логических связей и зависимостей групп фигур.
^ В 5—6 лет дети овладевают сериацией и классификацией (на материале геометрических фигур). Их интересуют действия преобразования, видоизменения фигур; воссоздание витражей, орнаментов, паркетов; симметрия; решение задач-головоломок. Все это способствует развитию наглядно-образного и логического мышления, сообразительности и смекалки, умения догадываться.
Литература
1. Белошистая А. В. Формирование и развитие математических способностей дошкольников. Курс лекций. — М.: Владос, 2004.
Габова М. А. Графика в детском саду. — Сыктывкар, 2002.
Ленгдон Н., Снейт Ч. С математикой в путь. — М., 1987.
Мерзон А. Е., Чекин А. Л. Азбука математики. — М.: Лайда, 1994.
Михайлова 3. А. Игровые задачи для дошкольников. — СПб.: ДЕТСТВО-ПРЕСС, 2007.
Нестервнко А. А. Страна загадок. — Ростов-на-Дону: Изд-во Ростовского университета, 1993.
Полякова М. Н., Шитова С. П. Освоение классификации детьми седьмого года жизни / Методические советы к программе «Детство» / Отв. ред. Т.Н.Бабаева, 3.А. Михайлова. — СПб.: ДЕТСТВО-ПРЕСС, 2006.
Развитие представлений о геометрических фигурах и форме предметов // Теории и технологии математического развития детей дошкольного возраста. Хрестоматия / Сост.: 3. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова. — М.: Центр педагогического образования, 2008.
Сидорчук Т. А. Технология обучения дошкольников умению решать творческие задачи. — Ульяновск, 1996.
Вопросы и задания для самоконтроля
© Сформулируйте основные педагогические и дидактические
цели развития у детей дошкольного возраста представлений о
геометрических фигурах. © Целесообразно ли детям 5—6 лет предлагать вопросы «Можно
ли через точку провести прямые (кривые) линии? Сколько?»?
Проверьте, как реагируют дети на это задание. Предложите
комментарии.
© Целесообразно ли предлагать детям дошкольного возраста схематические и неполные изображения геометрических фигур? Если вы считаете это возможным, то опишите возраст детей, содержание упражнений, методические приемы.
© Выполните упражнение «Посети каждую клетку». На квадрате, разделенном на 16 одинаковых маленьких квадратиков, проведите линию, которая прошла бы через все маленькие квадратики (ответ — на илл. 35). Предложите варианты методики использования этого упражнения в старшем дошкольном возрасте.
© У ребенка — 8 кругов, расположенных в ряд, начиная с самого маленького (материал для составления сериационного ряда).
- Глава 1. Исторический обзор и современное состояние теории
- Глава 2. Теоретические основы развития математических
- Глава 3. Содержание и технологии развития математических
- Предисловие
- Глава 1. Исторический обзор и современное состояние теории и технологии развития математических представлений у детей дошкольного возраста
- 1.1. Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления
- Обзор школьных методов обучения арифметике (XIX — начало XX в.). Влияние их на становление методики развития математических представлений у детей дошкольного возраста
- Математическое развитие дошкольников средствами «веселой» занимательной математики
- 1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)
- 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
- 1.4. Психолого-педагогические исследования 60—70-х гг. XX в. И передовой педагогический опыт в области теории и технологий математического развития детей
- 1.5. Современное состояние теории и технологии математического развития детей дошкольного возраста
- Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования
- Глава 2. Теоретические основы развития математических представлений у дошкольников
- 2.1. Множества Характеристическое свойство множества
- Универсальное множество. Дидактический материал
- Подмножество. Дополнение множества и отрицание предложения
- Пересечение множеств и конъюнкция предложений
- Объединение множеств и дизъюнкция предложений
- Разбиение множества на классы
- Отношения между двумя множествами
- 2.2. Отношения Бинарные отношения
- Свойства отношений
- Отношение эквивалентности
- Отношение порядка
- 2.3. Числа Возникновение понятия натурального числа
- Основные идеи количественной теории натуральных чисел
- Основные идеи порядковой теории натуральных чисел
- 2.4. Геометрические фигуры
- Виды геометрических фигур
- 2.5. Величины и их измерение
- Измерение величин
- 2.6. Алгоритмы
- Глава 3. Содержание и технологии развития математических представлений у детей дошкольного возраста
- 3.1. Общая характеристика содержания математических представлений у детей дошкольного возраста
- 3.2. Способы познания свойств и отношений в дошкольном возрасте
- Сериация как способ познания размера, количества, чисел
- Классификация как способ познания свойств и отношений
- Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
- Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
- 3.3. Особенности и методика освоения детьми дошкольного возраста формы предметов и геометрических фигур
- Развитие у детей представлений о форме в процессе игр и упражнений
- 3.4. Особенности и методика освоения детьми дошкольного возраста размеров предметов и величин
- Последовательность освоения величин в дошкольном возрасте
- Овладение детьми дошкольного возраста измерением величин
- 1 Центральный круг — содержание познания и обучения. Средний круг — дидактические пособия, материалы, игры. Внешний круг — приемы обучения и оценки ребенком величин.
- Познание прямых и обратных зависимостей в процессе измерения величин
- 3.5. Особенности и методика развития у детей дошкольного возраста представлений о массе предметов и способах измерения массы
- 3.6. Развитие пространственных представлений в дошкольном возрасте
- Особенности пространственной ориентировки ребенка дошкольного возраста
- Методика развития пространственных представлений и умений ориентироваться
- 3.7. Развитие временных представлений у детей дошкольного возраста
- 3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста
- Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Зависимость восприятия численности от пространственно-качественных особенностей множеств
- Содержание развития у детей количественных и числовых представлений
- Увеличение и уменьшение чисел. Решение практических задач
- 3.9. Освоение простейших зависимостей и закономерностей в дошкольном возрасте
- 3.9.1. Развитие понимания сохранения количества и величины у детей дошкольного возраста
- Методика использования творческих задач, вопросов и ситуаций в обучении дошкольников
- 4.2. Моделирование как средство логико-математического развития детей дошкольного возраста
- Методика развития моделирования у детей дошкольного возраста
- 4.3. Реализация идеи интеграции в логико-математическом развитии дошкольников
- Логико-математическое и экономическое развитие дошкольников
- Логико-математическое и речевое развитие дошкольников
- Логико-математическое и физическое развитие дошкольников
- Логико-математическое и художественно-эстетическое развитие дошкольников
- 4.4. Развивающая среда как средство развития математических представлений дошкольников
- 4.5. Использование познавательных книг математического содержания и рабочих тетрадей в логико-математическом развитии дошкольников