logo
14048_6d5631804b4074331103b1253a14afff

3. Содержание компьютерного обучения

Проблемы компьютер­ного обучения, как показано выше, не сводятся к массовому производству компьютеров и встраиванию их в существующий учебный процесс. Изменение средства обучения, как, впрочем, и изменения в любом звене дидактической системы, неизбежно приводит к пере­стройке всей этой системы. Использование вычислительной техни­ки расширяет возможности человека, однако оно является лишь инструментом, орудием решения задач, и его применение не должно превращаться в самоцель, моду или формальное мероприятие.

Сама возможность компьютеризации учебного процесса возни­кает тогда, когда выполняемые человеком функции могут быть фор­мализованы и адекватно воспроизведены с помощью технических средств. Поэтому прежде чем приступать к проектированию учебно­го процесса, преподаватель должен определить соотношение между автоматизированной и неавтоматизированной его частями. По не­которым литературным источникам, автоматизированный режим по объему учебного материала может достигать 30% содержания102. Эти данные могут помочь выбрать последовательность компьютеризации учебных предметов. Естественно, что в первую очередь она затронет те из них, которые используют строгий логико-мате­матический аппарат, содержание которых поддается формализа­ции. Неформализованные компоненты нужно развертывать каким-то другим, неалгоритмическим образом, что требует от преподава­теля, учителя соответствующего педагогического мастерства.

При проектировании содержания учебной деятельности нужно иметь в виду, что в нее входят знания из предметной области, а также те знания, которые необходимы для усвоения содержания учебного предмета, включая знания о самой предметной деятельности103. При этом, чем больший фрагмент обучения охватывает обу­чающая программа, тем большее значение приобретает этот второй компонент содержания. Здесь могут пригодиться элементы математики, формальной логики, эвристические средства решения учеб­ных задач.

В соответствии с концепцией знаково-контекстного обучения104 теория усваивается в контексте практического действия и, наоборот, практические действия имеют своей ориентировочной основой теорию. Такой подход положен нами в основу опыта компьютерного обучения в той части, которая касается химических расчет­ных задач. При традиционном подходе учащиеся или слушатели подготовительного отделения химического инженерного вуза долж­ны научиться решать множество подтипов задач путем отработки соответствующих способов решения. Простой перевод этой проце­дуры на компьютер немногим улучшает дело. Системно-контекст­ное же развертывание содержания химической науки задает разум­ную логику, связывающую все возможные компьютерные програм­мы решения этих задач. Усваивая логику такого развертывания и возможности его перевода на язык программирования, обучающий­ся усваивает этот язык в контексте изучения содержания учебного предмета105.

В процессе работы обучающиеся не просто подставляют недо­стающие данные в формулу, введенную преподавателем, а проделы­вают осознанную работу по теоретическому анализу химического материала. В результате они получают данные, преобразование ко­торых по известной процедуре составляет решение задачи. Теория и практика выступают как две стороны одного и того же процесса решения, а сама задача оказывается диалектически противоречи­вым явлением. С одной стороны, она является тем, «обличье» чего принимает теория, а с другой – объектом практического примене­ния этой теории. Противоречие снимается в процессе решения за­дачи, ориентировочной основой которой является теория.

Существует и другой вариант, при котором обучающийся самостоятельно составляет расчетные химические задачи по за­данному преподавателем алгоритму действий. Эта процедура яв­ляется не чем иным, как существенной частью программы для ЭВМ. В контексте решения содержательных химических задач обучающиеся усваивают и логику составления программ для ком­пьютера. Остается только записать эту логику на соответствующем машинном языке.

Составляя задачи, обучающиеся овладевают первым этапом про­граммирования – алгоритмизацией содержания химии. На втором этапе осваиваются такие атрибуты программирования, как запись чисел, операторы, правила построения программ и т.п. Таким обра­зом, слушатели одновременно используют два языка: содержатель­ный язык химической науки и формальный язык программирова­ния, один в контексте другого. Реализуется своего рода ресурсосберегающая технология, отпадает необходимость введения дополни­тельного курса программирования.

Рассмотренный пример призван иллюстрировать ту мысль, что компьютеризация обучения не означает простой добавки нового средства в уже сложившийся учебный процесс. Необходимо проек­тирование нового учебного процесса на основе современной психо­лого-педагогической теории. А это задача посложнее, чем подготов­ка обучающих программ по существующим учебным предметам. Судьба компьютеризации в конечном счете будет зависеть от педа­гогически и психологически обоснованной перестройки всего учеб­но-воспитательного процесса.