logo
035517_845F9_cherkasov_r_s_krupich_v_i_i_dr_met

§ 1. Урок, его структура. Основные требования к уроку. Типы уроков

1.1. Сущность урока математики. Основной формой организации учебно-воспитательной работы с учащимися в советской средней шко­ле является урок. Сущность его раскрывается в дидактике.

Понятие «урок» имеет характерные черты (основные характери­стики): цель, содержание, средства и методы обучения, организация учебной деятельности.

Главную роль среди основных характеристик играют цели урока: образовательные, воспитательные и развивающие.

К образовательным целям относится формирование математических знаний, умений и навыков.

Но формировать надо не только математические, но и общеучеб­ные знания, умения и навыки, позволяющие более рационально орга­низовать обучение математике.

В единстве с обучением осуществляются цели коммунистического воспитания и развития личности школьника.

Учебные программы по математике предусматривают решение определенных воспитательных задач. Для усиления воспитывающего влияния обучения учитель обязан тщательно анализировать воспи­тательные возможности математики и выделять воспитательную цель каждого урока.

В соответствии с целью урока отбирается содержание обучения, и прежде всего содержание урока. Поставить цель урока, рационально отобрать учебный материал учителю помогают учебные программы, учебники, методические пособия, дидактические материалы и др. Спе­цифика учебного предмета «математика» такова, что изложение мате­матического материала на уроке строится с сохранением логики рас­крытия этой темы в школьном учебнике.

Выбор оптимальных методов обучения — одна из трудных мето­дических задач. В педагогической литературе имеются рекомендации по выбору оптимальных методов обучения.

Вот одна из таких рекомендаций [22, 90]:

«Выбор метода не будет оптимальным, если избранный метод не удовлетворяет хотя бы одному из условий, от которых он зависит:

1) цель урока (обучающая, воспитывающая и развивающая);

2) особенности содержания изучаемого материала (сложность, но­визна, характер);

3) особенности учащихся класса (уровень развития мышления, уровень знаний, умений, сформированность навыков учебного труда, уровень воспитанности учащихся и др.);

4) оснащенность кабинета дидактическими материалами, техни­ческими средствами обучения;

5) эргономические условия (время проведения урока по расписа­нию, наполняемость класса и т. д.);

6) индивидуальные особенности учителя (черты характера, уровень овладения тем или другим методом, его отношения с классом)».

Учебный процесс предполагает органическое единство средств, методов и приемов работы с организационными формами обучения. Каждому методу, приему обучения соответствует своя организацион­ная форма, определяющаяся отношениями между учителем и учащимися и учащихся между собой.

Учитель управляет всей учебной деятельностью на уроке, исполь­зуя при этом общие (работа со всем классом), групповые (звено, брига­да и т. д.) и индивидуальные формы ее. Указанные выше формы орга­низации учебной деятельности выступают на уроке в различных соче­таниях и последовательностях.

В современных условиях обучения достаточно четко ставится во­прос о применении таких организационных форм работы на уроке, которые обеспечивали бы эффективное приобретение не только зна­ний, умений и навыков, но и ценного опыта нравственных и коллекти­вистских отношений.

Огромная роль здесь принадлежит коллективным формам работы, которые позволяют уплотнять время урока, создают ситуации взаимо­обучения учащихся и существенно влияют на развитие личности.

1.2. О структуре урока. Рассматривая урок с точки зрения логики процесса обучения, мы придем к понятию «структура урока». В дидак­тике [17, 102] исследуется понятие «общая дидактическая структура», сущность и компоненты которой усматриваются из схемы:

Число компонентов общей структуры неизменно — их всегда три.

Будем говорить теперь о структуре конкретного урока математики. По сути своей она остается той же, но форма ее может быть изменена в силу многих причин. Одна из таких причин — это необходимость де­тализации компонентов общей структуры.

Каждый из компонентов общей структуры слишком широк по содержанию и объему. Например, под актуализацией прежних зна­ний и способов действий понимается не только воспроизведение ранее изученных знаний и способов действий, но и их применение в новых ситуациях, стимулирование познавательной активности учащихся, проверка учителем уровня усвоения знаний и т. д.

Столь же широки два других компонента общей структуры урока.

Разукрупняя компоненты общей дидактической структуры, мы фактически получаем более конкретные шаги (этапы) процесса обуче­ния на уроке, которые могут выступать в различных последователь­ностях и взаимосвязях.

Используя понятие «структура урока математики», важно выделить из множества возможных основные этапы урока [15]:

1. Постановка цели урока перед .учащимися.

2. Ознакомление с новым материалом.

3. Закрепление нового материала: а) на уровне воспроизведения информации и способов деятельности, б) на уровне творческого при­менения и добывания знаний.

4. Проверка знаний, умений и навыков.

5. Систематизация и обобщение изученного материала (по теме, разделу и т. п.).

Для каждого урока обязательным является первый этап — по­становка цели, выбор остальных обусловлен целью урока.

Общая структура урока, основная дидактическая цель которого — ознакомление учащихся с новым материалом, такова:

Опираясь на мотивы учения, необходимо привлечь учащихся к предстоящей на уроке работе, вызвать потребность в познании, в само­контроле и самооценке своей деятельности и т. д. В течение всего уро­ка учитель изучает реакцию учащихся на все происходящее на уроке.

Мы знаем, что отдельный урок — это только одно звено в цепи других уроков по данной теме или разделу школьного курса. Но, с другой стороны, урок и даже каждый его этап — это нечто целое, законченное.

1.3. Основные требования к уроку математики. Анализ структуры урока показывает, что ведущую роль в ней играет цель урока: именно цель урока определяет его структуру, задает отношение между эта­пами урока, соподчиняет их и объединяет в единое целое.

Итак, одно из главных требований к уроку — его целенаправлен­ность.

В литературе по методике преподавания математики можно найти конкретные рекомендации по постановке общей цели урока, суть ко­торой сводится к следующему: вначале выделяется основная дидак­тическая (учебная) цель, исходя из которой выявляются возможности для установления целей воспитания и развития учащихся на уроке математики через его математическое содержание.

Целенаправленно и планомерно должно осуществляться не толь­ко обучение математике, но и воспитание на уроках математики.

Для практики обучения очень важно, чтобы цель урока, поставлен­ная учителем, была понята учеником. Осознанные учеником цель, учебная познавательная задача помогают ему действовать ак­тивно и ускоряют процесс получения результата своих действий.

Очевидно, что одна структура урока может обеспечить более ин­тересную и активную деятельность учащихся, чем другая. И надо стремиться к тому, чтобы урок оптимально обеспечивал активную по­знавательную деятельность учащихся.

Общая цель урока (единство обучения, воспитания и развития) порождает новые по содержанию и структуре уроки математики. Кратко опишем структуру двух уроков, проводимых с целью «учить учиться».

Пример 1. Учитель X. в системе уроков, проводимых в млад­ших классах с целью «учить учиться», предусматривает специальные уроки: «Как я учу уроки по математике».

В один день недели у пятиклассников было запланировано провести два урока математики. На первом уроке вводилось новое для учащихся правило сложения рациональных чисел с разными знаками и делались первые шаги по выработке умений применять полученное правило на практике. В конце первого урока пятиклассники получили задание на дом: проработать текст учебника, выполнить упражнения. Учащиеся выполняли его не дома, а на следующем уроке математики.

Учитель дает целевую установку: «Ребята, сейчас мы будем вместе выполнять домашнее задание».

Договорились о последовательности его выполнения: прежде всего необходимо проработать текст из учебного пособия, затем вы­учить правило сложения, но не путем многократного повторения его, а в процессе выполнения упражнений, проговаривая правило вначале вслух, а потом про себя.

Учащиеся с IV класса учатся читать учебную книгу по специаль­ному образцу, подробное описание которого можно найти в книге Н. И. Борисова [6].

Каждый ученик имеет в учебнике закладки — чистые полоски бу­маги, длины которых совпадают с длиной страницы, а ширина — с ши­риной ее поля. Одна такая полоска совмещается с полем читаемой страницы. Чтение текста ведется с карандашом в руках. При первом чтении на пронумерованной полоске делаются разметки прочитанного: главная мысль, например, отмечается круглыми скобками, особо важные места — восклицательным знаком или двумя вертикальными чертами и т. п. При повторном чтении ученик стремится разобрать трудные места в тексте, перечитать главные мысли, сформулировать основные вопросы и записать ответы на них в рабочей тетради и т. д.

В работе над текстом прошлого урока учащиеся отметили самое главное — правило сложения и образцы выполнения действия. Затем в соответствии с образцами, проговаривая шаги, указанные в правиле, они выполняют сложение.

Так постепенно учащиеся приобретают умения «учить уроки».

Пример 2. В старших классах возможно, исходя из допуще­ния, что ученики умеют извлекать новые знания из математической книги, построить урок так, что на первый план выступает обсуждение нового материала, который изучался учениками самостоятельно дома. Учащиеся вначале задают вопросы по самостоятельно проработанному новому материалу, показывают, как они выделяли главное, делали выводы и т. д.

Второе важное требование к уроку математики — это рациональ­ное построение его содержания. Бесспорно, что на уроке математики главным является его математическое содержание, которое должно глу­боко отражать логику данного учебного предмета и быть определяющим во всем, что делается на уроке. Именно на базе математического содержания урока формируются у учащихся три вида умений и навы­ков: математические, общеинтеллектуальные (приемы умственной дея­тельности), умения и навыки учебной деятельности.

Важно обучать учащихся не столько математическим фактам самим по себе, а приобщать учащихся к методам математики, развивать у них мышление.

Если, например, планируется познакомить учащихся на уроке с новой теоремой и ее доказательством, то на все содержание урока надо посмотреть с точки зрения обучения дедуктивным умозаключениям, общим методам доказательства и т. п. Это же математическое содер­жание учитель анализирует и с точки зрения возможностей продвиже­ния учащихся в овладении учебными действиями, например действия­ми «получение следствий» и «подведение под понятие» [33].

Обучение всем видам содержания, умений и навыков должно ве­стись планомерно, в определенной системе.

В каждом уроке важно выделить стержневую идею его математи­ческого содержания и вокруг нее сгруппировать все остальное.

Третье требование к уроку — это оптимальный выбор средств, методов и приемов обучения и воспитания на уроке.

Большая роль в отборе средств, методов и приемов работы на уроке отводится учителю. Успех дела зависит здесь во многом от того, на­сколько глубоко проникает учитель в специфику учебного материала, насколько умело ставит учебные познавательные задачи, учитывая при этом уровень общей и математической подготовки учащихся, их личностные качества и прогнозируя результаты использования того или иного средства, метода или приема.

Выбирая средства, методы и приемы обучения, необходимо пом­нить, что нельзя их универсализировать. Ни одно из средств, ни один из методов, взятых изолированно, не смогут обеспечить достижения целен обучения.

Специфика самого предмета «математика» такова, что основным в обучении являются наглядно-вербальные средства в различных соче­таниях. Урок математики характеризуется комплексным примене­нием наглядных и технических средств обучения.

Насущные задачи самообразования усилили роль печатных средств на уроках математики. В частности, усилено внимание к работе с учебной книгой непосредственно на уроке. Об этом уже шла речь выше.

Абстрактный характер математических понятий затрудняет вос­приятие их учащимися. Одним из средств преодоления затруднений такого рода является моделирование.'

В школьном курсе математики для раскрытия сущности понятий и отношений между ними используются модели различного вида: предметные, графические, знаковые и др. Среди разнообразия их важно уметь выделять главные, основные. К таким можно отнести координатную прямую, координатную плоскость и др.

В методической литературе нередко встречается термин «опора», который трактуется как вспомогательное средство обучения. Так, вышеупомянутые модели по сути своей есть также своеобразные опоры. В каждой теме школьного курса математики можно выделить различ­ного рода опоры (наглядно-образные, условно-символические и др.), назначения которых весьма разнообразны. На уроках математики каждый раз, когда встает проблема рассказать просто о сложном, ис­пользуются наглядно-образные опоры (рисунки, чертежи, подчерки­вающие самое главное, характерное для данного явления или по­нятия).

Опоры различного рода могут строить сами учащиеся. Например, они могут дать схему доказательства теоремы или решения задач ка­кого-то вида.

Урок математики характеризуется разнообразием форм организа­ции учебной деятельности учащихся.

Задачи самообразования, самоконтроля и самооценки своего труда требуют развития индивидуальных форм организации учебной дея­тельности.

Берутся на вооружение и групповые формы работы учащихся на уроках- Правильно организовать работу учащихся в группах — серь­езная методическая проблема. Недопустимо, чтобы активными в неоднородных группах были только более сильные учащиеся, чтобы они навязывали другим членам группы свои мнения, решения проблем, давали списывать готовые решения задач и т. п. Непродуманная груп­повая работа может нанести большой вред обучению и воспитанию. Хорошо, если сильные направляют работу более слабых учащихся данной группы, помогают им продвигаться вперед, следят за успеха­ми других.

В зависимости от поставленной цели группы могут формироваться весьма различными способами.

1.4. Типы уроков. В современной дидактической и методической литературе чаще всего применяется классификация по основной ди­дактической цели урока.

Пусть основная дидактическая цель урока — это ознакомление учащихся с новым материалом. В соответствии с этой целью централь­ным этапом урока является ознакомление с новым материалом. Осталь­ные этапы могут либо отсутствовать, либо быть менее значимыми по сравнению с основным.

Если основная дидактическая цель урока — закрепление изучен­ного материала, то урок естественно отнести к виду уроков по закреп­лению знаний и т. д. Идя таким путем, мы получим четыре основных типа уроков математики:

1. Урок по ознакомлению с новым материалом.

2. Урок по закреплению изученного.

3. Урок проверки знаний, умений и навыков.

4. Урок по систематизации и обобщению изученного материала. Заметим сразу, что рассматриваемая классификация исключает уроки комбинированного типа.

Возможны разновидности указанных выше основных типов уро­ков. Например, урок по закреплению знаний делится на два под­типа: урок тренировочного характера и урок творческого применения знаний. Такое подразделение связано с репродуктивным и продуктив­ным уровнями применения знаний. Но это не означает, что урок тре­нировочного характера не содержит продуктивных методов, а на уроке творческого применения знаний исключаются репродуктивные ме­тоды.

При обучении математике закрепление знаний проходит в основ­ном через решение задач, поэтому уроки закрепления знаний назы­вают уроками по решению задач.

В практике обучения довольно часто выделяют и говорят как о самостоятельных видах об уроках-лекциях, уроках самостоятельной работы учащихся, уроках общественного смотра знаний и др.

Рассматривая эти уроки с точки зрения их основной дидактиче­ской цели, мы видим, что все они являются лишь разновидностями одного из четырех указанных выше основных типов. Урок-лекция — это урок по ознакомлению с новым материалом, а урок общественного смотра знаний — урок проверки знаний, умений и навыков и т. д.

Рассмотренная классификация уроков по их основной дидактиче­ской цели не лишена недостатков. Например, названия основных ти­пов уроков в этой классификации ничего не говорят ни о внутренней

201организации учебного процесса, ни о способах проведения урока. Вот почему для характеристики уроков используются различные клас­сификации и даже их совокупности.

На практике, кроме выше рассмотренной, получила распростра­нение еще классификация уроков по способам их прове­дения.

Здесь выделяются, например, урок повторения, урок-беседа, урок — контрольная работа, комбинированный урок и т. д.

Чаще всего, характеризуя какой-либо конкретный урок, исходят из двух классификаций — по основной его дидактической цели и по способам проведения. Например, в самом названии «урок-лекция» усматривается и его основная цель, и способ его проведения.

Бесспорно, что ни одна из классификаций не может всесторонне и исчерпывающе охарактеризовать урок.