§ 3. Содержание школьного курса математики
Школьным учебным планом на изучение математики с I по X класс отводится около 2000 учебных часов1. Кроме того, дополнительные часы на изучение математики предусматриваются в системе факультативных курсов (VII—X классы)2.
Нормативным, обязательным для выполнения документом, определяющим основное содержание школьного курса математики, объем подлежащих усвоению учащимися каждого класса знаний, приобретаемых умений и навыков, является учебная программа по математике.
Учебная программа советской школы основывается на принципах соответствия программы основным целям школы, обеспечивает преемственность получаемой учащимися подготовки в I—III классах (начальная школа), IV—VIII классах (восьмилетняя школа), IX—X классах (средняя школа).
Учащиеся, которые после окончания восьмилетней школы будут завершать среднее образование в системе профессионально-технических училищ, в средних специальных учебных заведениях, в вечерних (заочных) школах, должны получить математическую подготовку в том же объеме, что и учащиеся, оканчивающие среднюю общеобразовательную школу. Таким образом, все учащиеся, получившие среднее образование, приобретают равную возможность для продолжения образования.
Предусмотренное программой содержание школьного математического образования, несмотря на происходящие в нем изменения, в течение достаточно длительного времени сохраняет свое основное ядро. Такая устойчивость основного содержания программы объясняется тем, что математика, приобретая в своем развитии много нового, сохраняет и все ранее накопленные научные знания, не отбрасывая их как устаревшие и ставшие ненужными.
«Ядро» современной программы по математике составляют:
1. Числовые системы.
2. Величины.
3. Уравнения и неравенства.
4. Тождественные преобразования математических выражений.
5. Координаты.
6. Функции.
7. Геометрические фигуры и их свойства. Измерение геометрических величин. Геометрические преобразования.
8. Векторы.
9. Начала математического анализа.
10. Основы информатики и вычислительной техники.
Каждый из вошедших в это «ядро» разделов имеет свою историю развития как предмет изучения в средней школе. На каком возрастном этапе, в каких классах, с какой глубиной и при каком числе часов изучаются эти разделы, определяет программа по математике для средней школы3. Вопросы их изучения будут подробно рассматриваться в специальной методике преподавания математики. Сейчас ограничимся отдельными краткими пояснениями.
Раздел «Числовые системы» изучается на протяжении всех лет обучения. В школьную программу вопросы числовых систем входили уже в далеком прошлом. Но с течением времени происходило значительное снижение возраста, в котором учащиеся изучали включаемые в программу темы, возрастала глубина их изложения. В настоящее время изыскиваются возможности включения в программу заключительной темы этого раздела - «Комплексные числа».
Изучение величин в программах и учебниках по математике не выделено в специальный раздел. Но на протяжении всех лет обучения учащиеся выполняют действия с различными величинами при решении задач, особенно задач, отражающих связи курса математики с дисциплинами естественнонаучного, технического циклов.
Изучению уравнений и неравенств посвящается значительная часть всего учебного времени. Особая значимость этой темы состоит в широком применении уравнений и неравенств в самых различных областях приложений математики. До недавнего времени систематическое изучение уравнений начиналось лишь с VI класса. В течение последних десятилетий знакомство с уравнениями и применение уравнений к решению задач вошло в курс математики начальной школы и IV—V классов.
Выполнение тождественных преобразований, овладение специфическим языком математики требуют от учащихся не только понимания, но и отработки прочных практических навыков на достаточно большом числе тренировочных упражнений. Такие упражнения, содержание которых в каждом разделе курса обладает своими особенностями, выполняются учащимися всех классов.
Координаты и функции вошли в курс математики средней школы только в первой четверти XX в. Характерной особенностью современного школьного курса математики являются расширение этих разделов и возрастающая роль метода координат и функций в изучении других тем школьной программы.
Наибольшую остроту в обсуждении вопросов его содержания приобрел в последние десятилетия курс геометрии. Здесь в значительно больших размерах, чем в других разделах школьного курса математики, возникли проблемы соотношения традиционного содержания с необходимыми новыми дополнениями. Однако при всех различиях в подходах к решению этой проблемы получило общее одобрение включение в курс геометрических преобразований.
Векторы впервые вошли в курс геометрии нашей школы только в середине 70-х годов. Большая общеобразовательная значимость этой темы, обширные практические применения обеспечили ей общее признание. Однако вопросы доходчивого для всех учащихся изложения этого раздела в школьных учебниках, применения векторов к решению содержательных задач находятся еще в стадии разработки и могут найти свое решение только на основе глубокого анализа и учета результатов школьного преподавания.
Элементы математического анализа вошли в программу советской общеобразовательной школы недавно. Включение в программу этих разделов вызвано их большой идейной и прикладной значимостью.
Последний из разделов — основы информатики и вычислительной техники — отражает требования, предъявляемые к современной математической подготовке молодежи в связи с широким внедрением в практику электронно-вычислительных машин.
Как отмечалось ранее, новые научные достижения, их развитие и внедрение в практику приводят к пересмотру школьного курса математики. Происходит идейное и прикладное обогащение курса. Кроме того, из содержания школьного образования исключаются менее важные разделы и на смену им приходят новые вопросы, приобретающие более высокую как теоретическую, так и практическую ценность. С развитием математики и ее приложений возрастает число разделов, обоснованно ждущих своего включения в школьный курс математики. Но возможности общего среднего образования небеспредельны, они ограничены как сроком обучения, так и пределами разумной учебной нагрузки учащихся. Несмотря на то что уже сейчас стало ясным, что для всеобщего среднего образования важно иметь в курсе средней школы элементы теории вероятности, статистики, что важно строить школьный курс так, чтобы учащиеся были подготовлены к восприятию новых аспектов прикладной математики, эти назревшие вопросы оказались весьма сложными для их практической реализации. Возможные формы включения ряда новых разделов в обязательный курс математики средней школы пока не найдены. В связи с этим обсуждается вопрос о том, что именно из прикладных вопросов должно войти в школьное обучение в ближайшем будущем. В то же время высказывается и такое мнение, что в программу не надо вводить специальных разделов прикладной математики, а идти по пути включения в курс таких тщательно отобранных задач, решение которых приводит к рассмотрению ситуаций, которые нужно математизировать, чтобы прийти затем к математическим моделям. Таким образом, предполагается установить более тесную взаимосвязь теоретического содержания математического образования с практикой применения учащимися приобретаемых математических знаний.
Пока все эти и ряд других, важных в своем прикладном значении разделов математики изучаются в школьных факультативах, на внеклассных занятиях. Из сказанного видно, что с течением времени содержание школьного математического образования расширяется. Возникает вопрос: каким образом всевозрастающий объем школьного курса математики остается возможным изучать в примерно остающееся стабильным учебное время?
Как показывает история развития школьного математического образования, это становится выполнимым в результате:
1) происходящего в изучаемом предмете процесса обобщения (генерализации) входящих в него понятий, рассматриваемых фактов;
2) все возрастающего применения математических знаний и их приложений в повседневной практике, что приводит к предварительному ознакомлению детей в их жизненном опыте с понятиями, подлежащими изучению;
3) совершенствования методов и средств обучения.
Включение в школьный курс основных разделов становится возможным, если каждый из перечисленных факторов учтен в должной для этого мере.
Выделенное ядро школьного курса математики составляет основу его базисной программы, в которой материал расположен не по классам, а по ступеням обучения (I—III, IV—V, VI—VIII, IX—X классы) и излагается согласно логике развития ведущих научно-методических линий.
Базисная программа обязательна для всех учебных заведений, дающих среднее образование, она является для них исходным документом для разработки тематических программ. В тематической программе для средней школы, кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи, примерные нормы оценок. В программе подробно освещаются вопросы формирования научного мировоззрения, воспитания учащихся в процессе обучения.
В содержании математического образования, в результатах, которые должны быть получены в процессе обучения, можно выделить следующие аспекты:
I1. Совокупность необходимой для усвоения и запоминания информации.
I2. Система выводимых одно из другого понятий.
II1. Совокупность приобретаемых оперативных навыков.
II2 . Система взаимосвязанных способностей.
В последние десятилетия предметом острых дискуссий стали вопросы о том, какова в современных условиях значимость каждого из этих аспектов. Не происходит ли постепенная утрата значимости аспектов I1 и II1 при возрастающей значимости для результатов процесса обучения аспектов I2 и II2?
Но становится все более очевидной необходимость одинаково большого внимания к каждому из этих аспектов, причем каждый из них получает свое развитие, приобретает новые особенности.
Нарушение этого требования влечет за собой отрицательные последствия, и прежде всего возникновение формализма в математической подготовке учащихся: приобретаемые учащимися знания не становятся опорой для осознанного приобретения необходимых практических навыков; получаемые практические навыки, не подкрепленные знаниями, быстро утрачиваются или применяются там, где это применение не является необходимым и даже не имеет смысла.
- Предисловие
- Глава I
- § 1. Предмет методики преподавания математики
- § 2. Цели обучения математике в советской средней общеобразовательной школе. Значение школьного курса математики в общем образовании
- § 3. Содержание школьного курса математики
- § 4. Вопросы политехнического образования в обучении математике
- Литература
- Глава II
- § 1. Принципы обучения как категории дидактики
- § 2. Принцип коммунистического воспитания
- § 3. Принцип научности
- § 4. Принцип сознательности, активности и самостоятельности
- § 5. Принцип систематичности и последовательности
- § 6. Принцип доступности
- § 7. Принцип наглядности
- § 8. Принцип индивидуального подхода к учащимся
- § 9. Принцип прочности знаний
- Литература
- Глава III
- § 1. Математические понятия
- § 2. Математические предложения
- 2) Рассмотрим определение четной функции:
- § 3. Математические доказательства
- Литература
- Глава IV методы обучения математике
- § 1. Проблема методов обучения
- § 2. Эмпирические методы: наблюдение, опыт, измерения
- § 3. Сравнение и аналогия
- § 4. Обобщение, абстрагирование и конкретизация
- § 5. Индукция
- § 6. Дедукция
- § 7. Анализ и синтез
- § 8. Методы проблемного обучения
- § 9. Особенности программированного обучения
- § 10. Специальные методы обучения математике
- Литература
- Глава V
- § 1. Значение учебных математических задач
- § 2. Роль задач в процессе обучения математике
- § 3. Обучение математике через задачи
- § 4. Общие методы обучения решению математических задач
- § 5. Организация обучения решению математических задач
- Литература
- Глава VI организация обучения математике
- § 1. Урок, его структура. Основные требования к уроку. Типы уроков
- § 2. Подготовка учителя к уроку. Анализ урока
- § 3. Организация самостоятельной работы при обучении учащихся математике
- § 4. Организация повторения
- § 5. Предупреждение неуспеваемости
- § 6. Индивидуализация и дифференциация при обучении
- § 7. Проверка знаний, умений и навыков учащихся по математике
- § 8. Специфика организации обучения математике в школе продленного дня
- § 9. Специфика обучения математике в вечерней (сменной) средней общеобразовательной школе
- § 10. Особенности организации работы по математике в средних профтехучилищах
- Литература
- Глава VII средства обучения математике
- § 1. Учебник математики
- § 2. Дидактические материалы и справочная математическая литература
- § 3. Учебное оборудование по математике и методика использования его в учебной работе
- § 4. Организация и оборудование кабинета математики
- § 5. Некоторые вопросы изготовления наглядных пособий по математике
- Литература
- Глава VIII
- § 1. Особенности преподавания математики в школах и классах с углубленным изучением этого предмета
- § 2. Факультативные занятия по математике
- § 3. Внеклассная и внешкольная работа по математике
- Литература