§ 4. Обобщение, абстрагирование и конкретизация
4.1. Обобщение и абстрагирование — два логических приема, применяемые почти всегда совместно в процессе познания.
Обобщение — это мысленное выделение, фиксирование каких-нибудь общих существенных свойств, принадлежащих только данному классу предметов или отношений. Абстрагирование — это мысленное отвлечение, отделение общих, существенных свойств, выделенных в результате обобщения, от прочих несущественных или необщих свойств рассматриваемых предметов или отношений и отбрасывание (в рамках нашего изучения) последних.
Когда мы говорим «несущественные свойства», то имеется в виду несущественные с математической точки зрения. Один и тот же предмет может изучаться, например, и физикой, и математикой. Для физики существенны одни его свойства (твердость, теплопроводимость, электропроводимость и другие физические свойства), для математики эти свойства несущественны, она изучает лишь форму, размеры, расположение предмета.
Из приведенного краткого разъяснения видно, что абстрагирование не может осуществляться без обобщения, без выделения того общего, существенного, что подлежит абстрагированию.
Обобщение и абстрагирование неизменно применяются в процессе формирования понятий, при переходе от представлений к понятиям и, вместе с индукцией, как эвристический метод.
Под обобщением понимают также переход от единичного к общему, от менее общего к более общему.
Под конкретизацией понимают обратный переход- от более общего к менее общему, от общего к единичному.
Если обобщение используется при формировании понятий, то конкретизация используется при описании конкретных ситуаций с помощью сформированных ранее понятий.
4.2. Уточним переход от единичного к общему, от менее общего к более общему и обратный переход.
Изучение отдельных предметов а, Ь, с, ... приводит нас к заключению о наличии у них общего свойства (или общих свойств, которые мы можем объединить в одно — конъюнкцию этих свойств) S, т. е. S (a), S (b), S (с), ... (S (х) означает: «х обладает свойством S»). Отвлечением этих свойств S от прочих свойств рассматриваемых предметов (т. е. абстрагированием) мы формируем класс предметов, характеризуемый свойством S:
Таким образом мы осуществляем переход от единичного (от отдельных предметов) к общему (классу предметов). Дальнейшее изучение приводит к включениюкласса А в более широкий класс В:
Это и есть переход от общего к более общему.
Например, формирование понятия «квадрат» на раннем этапе обучения начинается показом множества предметов, отличающихся друг от друга формой, размерами, окраской, материалом, из которого они сделаны. Дети, после того как им показывают на одну из этих фигур и говорят, что это квадрат, безошибочно отбирают из множества фигур все те, которые имеют такую же форму, пренебрегая различиями, касающимися размеров, окраски, материала. Здесь выделение из множества предметов подмножества производится по одному еще недостаточно проанализированному признаку — по форме. Дети еще не знают свойств квадрата, они распознают его только по форме. Такое распознавание встречается у детей 4—5 лет. Дальнейшая работа по формированию понятия квадрата состоит в анализе этой формы с целью выявления ее свойств. Учащимся предлагается путем наблюдения найти, что есть общего у всех отобранных фигур, имеющих форму квадрата, чем они отличаются от остальных. Устанавливается, что у всех квадратов 4 вершины и 4 стороны. Но у некоторых фигур, которые мы не отнесли к квадратам, тоже 4 вершины и 4 стороны. Оказывается, у квадрата все стороны равны и все углы прямые. Все отобранные фигуры, обладающие этими свойствами, мы объединяем в один класс — квадраты (переход от единичного к общему).
В дальнейшем обучении этот класс включается в более широкий класс прямоугольников (переход от общего к более общему). При этом переходе к более широкому классу происходит сужение характеристики класса, одно из свойств, характеризующих класс квадратов (равенство всех сторон), опускается.
Так, если множество свойств, характеризующих класс предметов А, обозначить через S (А) (в традиционной формальной логике А называется объемом понятия, a S (А)—содержанием понятия), то имеет место следующее соотношение:
Обратный переход от более общего к менее общему, или выделение некоторого подкласса А класса В, осуществляется с помощью некоторого свойства, которым обладают некоторые элементы В, другие же не обладают им. Те элементы В, которые обладают этим новым свойством и образуют подкласс Л класса В.
Присоединив это новое свойство Р к множеству свойств, характеризующих класс В, получаем множество свойств, характеризующих подкласс А, т. е.
В нашем примере, если к содержанию понятия «прямоугольник» (к множеству свойств, характеризующих класс прямоугольников) Добавить новое свойство (равенство всех сторон), мы получим содержание понятия «квадрат» (множество свойств, характеризующих класс квадратов).
4-3. В математике обобщение и абстрагирование часто связаны с заменой постоянных переменными (в переходе от записи отдельных фактов к записи общих закономерностей), а конкретизация — с подстановкой вместо переменных их значений (в обратном переходе).
Рассмотрим с точки зрения использования обобщения и абстрагирования открытие закона коммутативности сложения, который ранее мы изучили в ином аспекте.
Исходным эмпирическим материалом здесь служат непересекающиеся множества А я В конкретных предметов (карандашей и ручек или черных и красных палочек). Легко обнаруживается опытным путем, что, присоединяя к множеству А множество В или, наоборот, к множеству В множество А, получаем одно и то же множество. Варьируя число элементов этих множеств, получаем ряд конкретных равенств:
2 + 3 = 3 + 2; 5 + 7 = 7 + 5; 4 + 8 = 8 + 4 и т. п.
Внимательно присматриваемся к этим равенствам с целью выявления содержащегося в них общего и отделения его от частного содержания. Замечаем: в левой части каждого из этих равенств записана сумма двух чисел, в правой — сумма этих же чисел, но записанных в другом порядке. Как же сохранить только это общее, отвлекаясь от конкретных чисел, входящих в эти равенства?
Если просто отбросить эти числа, мы получим форму с «пустыми местами»: . которая не отражает выявленной
общей закономерности, так как не отмечено, какие пустые места должны заполняться одними и теми же названиями чисел. Чтобы устранить этот недостаток полученной формы, изображают пустые места, которые должны заполняться именами одних и тех же чисел, в виде пустых «окошек» одинаковой формы. В результате получаем:
В дальнейшем разъясняется, что в математике для большего удобства вместо пустых «окошек» различной формы применяются различные буквы и получается, например,
Эти буквы, играющие роль пустых мест, и называются переменными, а числа, имена которых можно поставить вместо этих букв, — их значениями.
Как видно, обобщение и абстрагирование привело к открытию закона коммутативности сложения и одновременно к важному понятию переменной. Переходом от имен конкретных чисел к числовым переменным и осуществляется обобщение и абстрагирование,
выражающие коммутативность конкретных операций в конкретных множествах, в свою очередь служат эмпирическим материалом, который подвергается дальнейшему обобщению и абстрагированию с целью получения общего понятия коммутативной операции:
«х * у = у * х для всех х, у М».
Здесь обобщение и абстрагирование осуществляется заменой имен операций и множеств (N, Q, V) переменными для операции (*) и для множества (М). Этой заменой мы перешли от менее общего к более общему. Подстановкой же вместо переменных постоянных (имен для операции и множества) мы осуществляем конкретизацию, переход от более общего к менее общему, а дальше отбрасыванием кванторов общности («для всяких х, у ... ») и подстановкой постоянных вместо числовых переменных (имен для чисел) мы переходим от общего к единичному.
4.4. Конкретизация основана на известном правиле вывода
называемом правилом конкретизации.
Смысл этого правила интуитивно ясен: из того, что свойством Р обладают все элементы некоторого множества, следует, что этим свойством обладает произвольный элемент а этого множества.
Применяя, например, закон ассоциативности сложения
к учетному вычислению суммы.
7 + (93 + 15),
мы применяем (неявно) правило конкретизации: мысленно мы отбрасываем в записи закона ассоциативности кванторы общности, подставляем вместо переменных х, у, г постоянные «7», «93» и «15» соответственно и получаем равенство
7 + (93 + 15) - (7 + 93) + 15,
следующее из (*) по правилу конкретизации.
Как видно, с помощью этого правила мы осуществляем переход от общего к единичному.
4.5. Обобщение, абстрагирование и конкретизация находят широкое применение в специальных методах обучения математике, о которых речь пойдет дальше.
Если некоторая реальная ситуация или связанная с нею задача приводит к еще не изученной математической модели, то приходится исследовать новый класс моделей.
Для осуществления перехода от конкретной модели к классу моделей такого типа используется обобщение и абстрагирование. Применение же результатов исследования к конкретной модели этого класса предполагает использование конкретизации.
Например, пусть некоторая задача описывается о помощью квадратного уравнения
когда учащиеся еще не умеют решать подобные уравнения.
Это является стимулом для изучения соответствующего класса уравнений (моделей)
Переход от конкретной модели (1) к классу моделей (2), т. е. от единичного к общему, осуществляется заменой коэффициентов, представляющих собой имена чисел, числовыми переменными.
После исследования этого класса моделей (построения алгоритма для решения любого уравнения этого класса) с помощью конкретизации (подстановки в формуле корней вместо а, Ь, с конкретных коэффициентов) решаем исходное и другие уравнения этого класса.
4.6. Процесс абстрагирования в математике во многом отличается от аналогичного процесса в других науках, поскольку способы абстрагирования зависят от природы изучаемых объектов, характера и целей их изучения. Поэтому естественно, что характеристические особенности абстрагирования в математике неизбежно должны находить некоторое отражение и в методах обучения математике.
Наиболее распространенные в математике виды абстракций — обобщающая абстракция (или абстракция отождествления), идеализация и различные абстракции осуществимости — используются и в школьном обучении математике. Однако методически формирование этих абстракций не разработано. Поэтому часто эти и другие математические абстракции вызывают серьезные затруднения, с ними связаны и многие допускаемые учащимися ошибки.
Основой абстракции отождествления является отношение эквивалентности. При установлении отношения эквивалентности в исследуемом множестве объектов эквивалентные объекты отождествляются по какому-нибудь свойству, которое абстрагируется от остальных свойств этих объектов и становится самостоятельным абстрактным понятием, находящимся на более высокой ступени абстракции, чем объекты, от которых оно было абстрагировано.
Так, отношение равночисленности множеств объединяет в один класс все конечные множества, между которыми можно установить взаимно однозначное соответствие (эквивалентные множества). От множеств, принадлежащих одному и тому же классу эквивалентности, абстрагируется их общее свойство, характеризующее этот класс. Это свойство и является самостоятельным понятием натурального числа, выражающего численность множеств (одна и та же для каждого множества) из данного класса.
Так формировалось понятие натурального числа в длительном историческом процессе, так оно формируется и в обучении -дошкольников и младших школьников.
Не надо думать, что усвоение детьми последовательности числительных— один, два, три, ..., десять, ... —является признаком сформированное у них понятия натурального числа.
формирование этого понятия у детей в какой-то мере имитирует исторический процесс формирования понятия натурального числа.
Мы должны предоставить детям возможность сравнивать множества различных предметов по их численности, обнаруживать, что между некоторыми множествами удается установить взаимно однозначное соответствие, между другими не удается. Так возникают классы равночисленных множеств, которым приписываются в качестве характеристик определенные натуральные числа.
Как видно, понятие натурального числа, как и другие понятия, формируемые с помощью абстракции отождествления, представляют собой абстракцию от абстракции: от предмета мы переходим к классу эквивалентных (в каком-то отношении) предметов, а от этого класса — к свойству, общему для всех объектов, ему принадлежащих, т. е. эти объекты отождествляются по одному свойству, которое абстрагируется от прочих свойств.
Абстрагирование в математике часто выступает как многоступенчатый процесс, результатом которого являются абстракции от абстракций.
Рассмотрим еще несколько примеров.
Отношение сонаправленности лучей (плоскости или пространства) разбивает множество лучей на классы эквивалентности (классы сонаправленных лучей). Все лучи одного класса отождествляются по свойству одинаковости направления (отношению сонаправленности). По существу каждый класс сонаправленных лучей представляет собой одно направление. Но это направление определяется любым лучом (представителем) этого класса.
Отношение подобия фигур разбивает множество всех фигур на классы эквивалентности (классы подобных фигур). Все фигуры одного класса характеризуются одинаковостью формы. По существу каждый такой класс можно называть формой. Но эта форма определяется любой фигурой (любым представителем) этого класса.
В школьном обучении не всегда явно вычленяются все этапы абстрагирования. В частности, образование классов эквивалентности, как правило, протекает неявно. Наблюдается свойство у некоторых предметов данного рода или отношение между ними, которое затем абстрагируется от этих предметов и становится самостоятельным понятием. Часто, ничего не говоря о классах эквивалентности, мы сразу же пользуемся представителями этих классов.
Проиллюстрируем это на двух примерах.
1. Формируя понятие обыкновенной дроби, мы исходим из реальной потребности разделить целое на несколько равных частей. Получаем дроби:
Затем обнаруживаем(также опытным путем), что
Т. е. дробиобозначают одно и то же (дробное) число.
По существу мы имеем здесь классы эквивалентности, образуемые в множестве дробей(или в множестве пар с помощью отношения эквивалентности
Таким образом, но когда мы пишем
то имеем в виду, что равны (совпадают) числа, обозначаемые эквивалентными дробями. Эти дроби, принадлежащие одному классу эквивалентности, обозначают одно рациональное число. Это число можно отождествить с классом эквивалентных дробей или с любой дробью (с любым представителем) этого класса.
Вполне понятно, что работать с числами-классами практически невозможно. Поэтому все отношения и операции обычно определяются через отношения и операции над представителями классов, причем так, что их результаты не зависят от выбора представителей. Поэтому мы имеем возможность выбирать наиболее простые представители классов (несократимые дроби), с которыми наиболее удобно работать.
Как видно, хотя мы в школе и не говорим о классах эквивалентности, но подчеркивание того факта, что есть бесконечно много дробей (например,выражающих одно и то же числе, по существу есть указание на соответствующий класс эквивалентности.
2. Рассмотрим множество всевозможных направленных отрезков или пар точек плоскости или пространства (пару точек (А, В) можно изобразить в виде направленного отрезка с началом А и концом В).
Установим в этом множестве отношение эквивалентности
т. е. два направленных отрезка эквивалентны, если соответствующие лучи сонаправлены, а длины этих отрезков равны.
Так как это отношение является отношением эквивалентности, то оно порождает разбиение множества всех направленных отрезков на классы эквивалентности.
Теперь возможны два методически различных продолжения:
а) каждый класс эквивалентности называть вектором (это по существу то же, что называть вектором параллельный перенос, так как класс эквивалентных пар точек определяет параллельный перенос);
б) называть вектором направленный отрезок, т. е. отождествить класс эквивалентности с любым его представителем.
Такое отождествление вполне правомерно, так как практически в физических и других приложениях векторов мы работаем не с классами эквивалентных направленных отрезков, а с теми или иными
представителями этих классов, т. е. с направленными отрезками, исходящими из определенных точек.
Педагогический подход, состоящий в замене класса его представителем, направлен на понижение уровня абстрактности понятий (направленный отрезок — менее абстрактное понятие, чем класс таких отрезков).
Наряду с абстракцией отождествления при построении математических моделей действительности, а следовательно, и при обучении математике используется и такой специфический прием абстрагирования, как идеализация.
Под идеализацией имеется в виду образование понятий, наделенных не только свойствами, отвлеченными от их реальных прообразов, но и некоторыми воображаемыми свойствами, отсутствующими у исходных объектов. Это делается для того, чтобы посредством изучения идеализированных образов облегчить в конечном счете изучение их реальных прообразов.
Разъяснение этого в процессе обучения на конкретных примерах имеет важное воспитательное значение, раскрывая связь абстрактных, идеализированных понятий с реальным миром. Оно способствует также пониманию способа математизации, построения математических моделей реальных ситуаций.
Действительно, нигде в природе не встречается «геометрическая точка» (не имеющая размеров), но попытка построения геометрии, не использующей этой абстракции, не приводит к успеху. Точно так же невозможно развивать геометрию без таких идеализированных понятий, как «прямая линия», «плоскость», «шар» и т. д. Все реальные прообразы шара имеют на своей поверхности выбоины и неровности, а некоторые несколько отклоняются от «идеальной» формы шара (как, например, земля), но если бы геометры стали заниматься такими выбоинами, неровностями и отклонениями, они никогда не смогли бы получить формулу для объема шара. Поэтому мы изучаем «идеализированную» форму шара и хотя получаемая формула в применении к реальным фигурам, лишь похожим на шар, дает некоторую погрешность, полученный приближенный ответ достаточен для практических потребностей. Это должно быть доведено до сознания учащихся.
Особым видом идеализации является абстракция потенциальной осуществимости. Например, при построении натуральных чисел абстрагируются от того, что невозможно написать или назвать число, содержащее в десятичной записи слишком много цифр (например, 101000). Нам достаточно допустить возможность, как только дошли до некоторого числа п, написания и следующего за ним числа n + 1. Точно так же при изучении геометрии, пользуясь изображениями лишь конечных участков (отрезков) прямой, мы допускаем возможность неограниченного продолжения их в обе стороны или допускаем возможность безграничного деления отрезка или других фигур.
- Предисловие
- Глава I
- § 1. Предмет методики преподавания математики
- § 2. Цели обучения математике в советской средней общеобразовательной школе. Значение школьного курса математики в общем образовании
- § 3. Содержание школьного курса математики
- § 4. Вопросы политехнического образования в обучении математике
- Литература
- Глава II
- § 1. Принципы обучения как категории дидактики
- § 2. Принцип коммунистического воспитания
- § 3. Принцип научности
- § 4. Принцип сознательности, активности и самостоятельности
- § 5. Принцип систематичности и последовательности
- § 6. Принцип доступности
- § 7. Принцип наглядности
- § 8. Принцип индивидуального подхода к учащимся
- § 9. Принцип прочности знаний
- Литература
- Глава III
- § 1. Математические понятия
- § 2. Математические предложения
- 2) Рассмотрим определение четной функции:
- § 3. Математические доказательства
- Литература
- Глава IV методы обучения математике
- § 1. Проблема методов обучения
- § 2. Эмпирические методы: наблюдение, опыт, измерения
- § 3. Сравнение и аналогия
- § 4. Обобщение, абстрагирование и конкретизация
- § 5. Индукция
- § 6. Дедукция
- § 7. Анализ и синтез
- § 8. Методы проблемного обучения
- § 9. Особенности программированного обучения
- § 10. Специальные методы обучения математике
- Литература
- Глава V
- § 1. Значение учебных математических задач
- § 2. Роль задач в процессе обучения математике
- § 3. Обучение математике через задачи
- § 4. Общие методы обучения решению математических задач
- § 5. Организация обучения решению математических задач
- Литература
- Глава VI организация обучения математике
- § 1. Урок, его структура. Основные требования к уроку. Типы уроков
- § 2. Подготовка учителя к уроку. Анализ урока
- § 3. Организация самостоятельной работы при обучении учащихся математике
- § 4. Организация повторения
- § 5. Предупреждение неуспеваемости
- § 6. Индивидуализация и дифференциация при обучении
- § 7. Проверка знаний, умений и навыков учащихся по математике
- § 8. Специфика организации обучения математике в школе продленного дня
- § 9. Специфика обучения математике в вечерней (сменной) средней общеобразовательной школе
- § 10. Особенности организации работы по математике в средних профтехучилищах
- Литература
- Глава VII средства обучения математике
- § 1. Учебник математики
- § 2. Дидактические материалы и справочная математическая литература
- § 3. Учебное оборудование по математике и методика использования его в учебной работе
- § 4. Организация и оборудование кабинета математики
- § 5. Некоторые вопросы изготовления наглядных пособий по математике
- Литература
- Глава VIII
- § 1. Особенности преподавания математики в школах и классах с углубленным изучением этого предмета
- § 2. Факультативные занятия по математике
- § 3. Внеклассная и внешкольная работа по математике
- Литература