§ 7. Принцип наглядности
Теоретическое обоснование принципу наглядности впервые было дано чешским педагогом Я- А. Коменским, который выдвинул требование учить людей познавать самые вещи, а не только чужие свидетельства о них.
Русский педагог К- Д- Ушинский указывал, что наглядность отвечает психологическим особенностям детей, мыслящих «формами, звуками, красками, ощущениями». Наглядное обучение, по словам К- Д. Ушинского, «строится не на отвлеченных представлениях и словах, а на конкретных образах, непосредственно воспринятых ребенком». Наглядность обогащает круг представлений ребенка, делает обучение более доступным, конкретным и интересным, развивает наблюдательность и мышление.
Принцип наглядности вытекает из сущности процесса восприятия, осмысления и обобщения учащимися изучаемого материала. Он означает, что в обучении необходимо, следуя логике процесса усвоения знаний, на каждом этапе обучения найти его исходное начало в фактах и наблюдениях единичного или в аксиомах, научных понятиях и теориях, после чего определить закономерный переход от восприятия единичного, конкретного предмета к общему, абстрактному или, наоборот, от общего, абстрактного к единичному, конкретному.
Таким образом, советская дидактика исходит из единства чувственного и логического, считает, что наглядность обеспечивает связь между конкретным и абстрактным, содействует развитию абстрактного мышления, во многих случаях служит его опорой. Однако характер и степень использования наглядности различны на разных этапах обучения. Излишнее увлечение наглядностью в обучении может привести к нежелательным результатам. Конкретная наглядность (например, рассмотрение моделей геометрических тел) должна постепенно уступать место абстрактной наглядности (рассмотрению плоских чертежей).
Говоря о значении принципа наглядности и о его роли в процессе учебного познания, дидактика утверждает, что наглядность является исходным моментом обучения главным образом в младших классах. По мере движения учащихся к старшим классам учитель постепенно должен находить в обучении историко-индуктивный путь пополнения знаний: постановка проблемы, история ее решения и современное состояние, затем практические или лабораторные работы. Здесь наглядность получает свою реализацию дважды: как иллюстрация истории открытия и как способ раскрытия современного решения проблемы.
Однако исторический подход занимает много времени и не всегда необходим. Поэтому исходным началом могут быть теоретические положения, аксиомы, системы понятий, усвоенные учащимися на предшествующих этапах обучения. В этом случае наглядность используется лишь для иллюстрации усвоенных учащимися знаний в процессе их применения к решению задач.
По характеру отражения окружающей действительности различают следующие виды наглядности:
натуральная (естественная) наглядность, представляющая собой реальные предметы или процессы (объекты и явления, раздаточный материал и др.);
изобразительная наглядность (фотографии, художественные картины, рисунки, учебные картины и др.) применяется, когда показ натурального предмета затруднен, а созерцание конкретного образа необходимо;
символическая наглядность (чертежи, графики, схемы, таблицы, диаграммы) по существу является своеобразным языком, а потому должна специально изучаться, чтобы стать понятной. Например, при изучении свойств функций (возрастание, убывание, максимум, минимум и др.) целесообразно их аналитическую запись переводить на язык графиков и на этой основе тренировать учащихся «читать» графики функций.
Различные виды наглядности выполняют различные функции. Одни содействуют оживлению представлений (картины, предметы жизни), другие являются опорой для отвлеченного мышления.
Наглядность применяется и как средство познания нового, и для иллюстрации мысли, и для развития наблюдательности, и для лучшего запоминания материала. Средства наглядности используются на всех этапах процесса обучения: при объяснении нового материала учителем, при закреплении знаний, формировании умений и навыков, при выполнении домашних заданий, при контроле усвоения учебного материала.
Применение наглядных пособий в обучении подчинено ряду правил:
ориентировать учащихся на всестороннее восприятие предмета с помощью разных органов чувств;
обращать внимание учащихся на самые важные, существенные признаки предмета;
показать предмет (по возможности) в его развитии;
предоставить учащимся возможность проявлять максимум активности и самостоятельности при рассмотрении наглядных пособий;
использовать средств наглядности ровно столько, сколько это нужно, не допускать перегрузки обучения наглядными пособиями, не превращать наглядность в самоцель.
Следовательно, умелое применение средств наглядности в обучении всецело находится в руках учителя. Учитель в каждом отдельном случае должен самостоятельно решать, когда и в какой мере надо применять наглядность в процессе обучения, ибо от этого в определенной степени зависит качество знаний учащихся.
- Предисловие
- Глава I
- § 1. Предмет методики преподавания математики
- § 2. Цели обучения математике в советской средней общеобразовательной школе. Значение школьного курса математики в общем образовании
- § 3. Содержание школьного курса математики
- § 4. Вопросы политехнического образования в обучении математике
- Литература
- Глава II
- § 1. Принципы обучения как категории дидактики
- § 2. Принцип коммунистического воспитания
- § 3. Принцип научности
- § 4. Принцип сознательности, активности и самостоятельности
- § 5. Принцип систематичности и последовательности
- § 6. Принцип доступности
- § 7. Принцип наглядности
- § 8. Принцип индивидуального подхода к учащимся
- § 9. Принцип прочности знаний
- Литература
- Глава III
- § 1. Математические понятия
- § 2. Математические предложения
- 2) Рассмотрим определение четной функции:
- § 3. Математические доказательства
- Литература
- Глава IV методы обучения математике
- § 1. Проблема методов обучения
- § 2. Эмпирические методы: наблюдение, опыт, измерения
- § 3. Сравнение и аналогия
- § 4. Обобщение, абстрагирование и конкретизация
- § 5. Индукция
- § 6. Дедукция
- § 7. Анализ и синтез
- § 8. Методы проблемного обучения
- § 9. Особенности программированного обучения
- § 10. Специальные методы обучения математике
- Литература
- Глава V
- § 1. Значение учебных математических задач
- § 2. Роль задач в процессе обучения математике
- § 3. Обучение математике через задачи
- § 4. Общие методы обучения решению математических задач
- § 5. Организация обучения решению математических задач
- Литература
- Глава VI организация обучения математике
- § 1. Урок, его структура. Основные требования к уроку. Типы уроков
- § 2. Подготовка учителя к уроку. Анализ урока
- § 3. Организация самостоятельной работы при обучении учащихся математике
- § 4. Организация повторения
- § 5. Предупреждение неуспеваемости
- § 6. Индивидуализация и дифференциация при обучении
- § 7. Проверка знаний, умений и навыков учащихся по математике
- § 8. Специфика организации обучения математике в школе продленного дня
- § 9. Специфика обучения математике в вечерней (сменной) средней общеобразовательной школе
- § 10. Особенности организации работы по математике в средних профтехучилищах
- Литература
- Глава VII средства обучения математике
- § 1. Учебник математики
- § 2. Дидактические материалы и справочная математическая литература
- § 3. Учебное оборудование по математике и методика использования его в учебной работе
- § 4. Организация и оборудование кабинета математики
- § 5. Некоторые вопросы изготовления наглядных пособий по математике
- Литература
- Глава VIII
- § 1. Особенности преподавания математики в школах и классах с углубленным изучением этого предмета
- § 2. Факультативные занятия по математике
- § 3. Внеклассная и внешкольная работа по математике
- Литература