Заключение
Цель познания в науке и повседневной жизни - получение истинных знаний и полноценное использование их на практике. Знание формальной логики и диалектики помогает предвидеть события и лучшим способом планировать деятельность, максимально предусматривать возможные последствия, выдвигать различные гипотезы, эффективнее обучать и самим обучаться, видеть “логику вещей”, т. е. объективную диалектику, умело вести дискуссии и полемику.
Изучение логики желательно продолжить, прослушав ряд спецкурсов, самостоятельно изучив дополнительную литературу. Эти формы работы помогут студентам, изучившим основной курс формальной логики (как классической, так и многочисленных направлений неклассических логик, изложенных в последней главе), стать преподавателем логики в средней школе, лицее, гимназии и ином учебном заведении. Можно предвидеть, что потребность в таких преподавателях будет возрастать в связи с введением курса логики в средних учебных заведениях.
В статье доктора философских наук В. А. Светлова “Нужна ли логика будущему учителю?” (вопрос, вынесенный в заголовок, носит в общем риторический характер) сформулированы некоторые перспективы дальнейшего изучения логики студентами педвузов. В. А. Светлов пишет: “Что же может дать логика для подготовки учителя? При самом умеренном ее изучении студент педагогического вуза за один-два семестра мог бы дополнительно к стандартному курсу освоить теоретически и научиться применять практически (по выбору): логику научного исследования, логические основы семантики и семиотики, логику научно-педагогической работы, логику принятия решения (в условиях определенности, неопределенности и риска), логику спора, логику общения (межличностных отношений), логику структурного
445
анализа сказок, мифов, художественных текстов, логику конфликтов (межличностных, политических, военных)”'.
Помимо этих направлений будущим преподавателям логики можно посоветовать изучить материалы по методике преподавания логики и по истории логики.
Интересным, перспективным направлением является анализ уже созданных и разработка новых программ для ЭВМ по курсу формальной логики - как традиционной (с элементами символической логики), так и символической логики2.
Широкое применение логических знаний необходимо и при разработке обучающих программ для ЭВМ по различным школьным учебным дисциплинам (опыт составления разнообразных программ по математике, русскому языку, истории, иностранным языкам, географии и другим предметам имеется, и его предстоит изучить).
Конкретное применение знаний формальной логики учителю потребуется и в вузе, и в школе при работе с понятиями и осуществлении логических операций с ними (определение, деление понятий, классификация, обобщение и ограничение). Знание темы “Суждение” поможет учителю и учащимся четко выявлять логическую структуру простых и сложных суждений, правильно производить отрицания суждений, работать с модальными суждениями. Мы надеемся, что запись сложных суждений с помощью логических союзов, которая очень нравится учащимся 3-7 и старших классов (о чем свидетельствуют многочисленные эксперименты со школьниками, изучавшими элементы логики под моим и под руководством студентов МПГУ им В. И. Ленина) оживит урок по любому школьному предмету.
Тема “Умозаключение” и ее использование отражены в данной книге подробно; в ней выделены два отдельных параграфа:
“Дедукция и индукция в учебном процессе” и “Умозаключение по аналогии и его виды”. Желательно в процессе преподавания любого предмета показать структуру многих форм умозаключений, при этом предложить учащимся поискать в художественной
___________________________
'Светлов В. А. Нужна ли логика учителю?// Советский учитель. Л., 1991. 25 янв. С. 2.
2Такие программы созданы в Москве (МГУ им. М. В. Ломоносова и МПГУ им. В. И. Ленина), в Минске (БГУ), в Санкт-Петербурге и др.
446
литературе примеры на эти виды умозаключений. Например, в рассказе Агаты Кристи “Двойная улика” месье Пуаро расследует похищение ряда драгоценностей из коллекции Хардмана (жемчужины, рубины, изумрудное ожерелье). Подозрение могло касаться четверых. Вот их диалог, в котором сформулировано умозаключение:
“- Мистер Хардман, кого Вы сами подозреваете из этой четверки?
- О, месье Пуаро, что за вопрос! Ведь я Вам уже сказал, что это мои друзья. Я ни одного из них не подозреваю или, если Вам угодно, - всех в одинаковой мере.
- Не могу с Вами согласиться. Я уверен, что Вы кого-то из них подозреваете. Это не графиня Росакова. Это не мистер Паркер. Кто же тогда: леди Ранкорн или мистер Джонстон?”'.
Структура этого умозаключения такая:
(abcd;):(сd)
Это относительно новая разновидность структуры разделительно-категорического умозаключения.
Вообще в художественной литературе можно найти богатейшее собрание самых интересных иллюстраций по курсу логики; следует к такой работе подключить и студентов, и учащихся школы. Это одна из заманчивых перспектив в методике изучения логики, свидетельствующая о тесном взаимодействии языка и мышления.
Значительный интерес представляет раздел логики, посвященный спору, дискуссиям, разоблачению различных недопустимых уловок, используемых в полемике. В исследование этой темы оригинальный вклад внес русский логик С. И. Поварнин (1870-1952)2.
После изучения курса логики рекомендуем проверить свои знания. Для этого можно ответить на предлагаемые ниже задания тестов.
___________________________
'Агата Кристи. Двойная улика. М., 1990. С. 25.
2См.: Поварнин С. И. Спор: О теории и практике спора // Вопросы философии. М., 1990. №3. С. 57-133.
447
Тесты по курсу логики1
- Введение
- Глава I предмет и значение логики
- § 1. Формы познания Формы чувственного познания
- Формы абстрактного мышления
- Растения делятся или на однолетние или на многолетние.
- Особенности абстрактного мышления
- § 2. Понятие логической формы и логического закона
- Понятие логической формы
- Логические законы
- Истинность мысли и формальная правильность рассуждений
- Все металлы - твердые тела.
- Все небесные тела – планеты
- Все тигры полосатые.
- 4. Все ушастые тюлени – ластоногие.
- Теоретическое и практическое значение логики
- § 3. Логика и язык
- Семантические категории
- Задачи к теме “Предмет и значение логики”
- Глава II понятие
- § 1. Понятие как форма мышления
- Содержание и объем понятия
- Закон обратного отношения между объемами и содержаниями понятий
- § 2. Отношения между понятиями
- Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- Типы несовместимости: соподчинение, противоположность, противоречие
- § 3. Определение понятий
- Правила явного определения. Ошибки, возможные в определении
- Неявные определения
- Определение через аксиомы
- Использование определений понятий в процессе обучения
- Приемы, сходные с определением понятий
- § 4. Деление понятий. Классификация
- Правила деления понятий
- Виды деления: по видообразующему признаку и дихотомическое деление
- Классификация
- Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- § 5. Ограничение и обобщение понятий
- II. Определить отношения между следующими понятиями:
- Глава III суждение
- § 1. Общая характеристика суждения
- Суждение и предложение
- § 2. Простое суждение
- Виды простых ассерторических суждений
- 1. Суждения свойства (атрибутивные).
- 2. Суждения с отношениями.
- Категорические суждения и их виды (деление по количеству и качеству)
- Объединенная классификация простых категорических суждений по количеству и качеству
- Распределенность терминов в категорических суждениях
- § 3. Сложное суждение и его виды. Исчисление высказываний
- Способы отрицания суждений
- Отрицание сложных суждении
- Исчисление высказываний
- § 4. Выражение логических связок (логических постоянных) в естественном языке
- §5.Отношения между суждениями по значениям истинности
- Противоположность (контрарность)
- § Б. Деление суждений по модальности
- Задачи к теме “Суждение”
- VII. Являются ли суждениями следующие предложения?
- Глава IV законы (принципы) правильного мышления
- § 1. Понятие логического закона
- § 2. Законы логики и их роль в познании Закон тождества
- Закон непротиворечия
- Закон исключенного третьего
- Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- Закон достаточного основания
- § 3. Использование формально-логических законов в процессе обучения
- Задачи к теме “Законы (принципы) правильного мышления”
- Глава V умозаключение
- § 1. Общее понятие об умозаключении
- Понятие логического следования
- § 2. Дедуктивные умозаключения
- Понятие правила вывода
- § 3. Выводы из категорических суждений посредством их преобразования
- S есть р
- § 4. Простой категорический силлогизм1
- Фигуры и модусы категорического силлогизма
- Особые правила фигур
- Модусы категорического силлогизма.
- Правила категорического силлогизма
- /. Правила терминов
- //. Правила посылок
- § 5. Сокращенный категорический силлогизм (энтимема)
- § 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- Все с суть d. Сорит (с общими посылками)
- Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- § 7. Условные умозаключения
- I. Утверждающий модус (modus ponens).
- II. Отрицающий модус (modus tollens).
- Первый вероятностный модус
- Структура его: Cхема:
- Второй вероятностный модус
- § 8. Разделительные умозаключения
- § 9. Условно-разделительные (лемматические) умозаключения
- Дилемма1
- Cхема Формула:
- Трилемма
- § 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- 1. В умозаключении пропущено заключение
- 2. В умозаключении пропущена одна из посылок
- 1. Простая контрапозиция.
- 2. Сложная контрапозиция.
- § 11. Непрямые (косвенные) выводы
- 1. Рассуждение по правилу введения импликации
- 2. Правило сведения “к абсурду”
- 3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- § 12. Индуктивные умозаключения и их виды Логическая природа индукции
- Математическая индукция
- Виды неполной индукции
- 2. Индукция через анализ и отбор фактов
- Понятие вероятности
- 3. Научная индукция
- § 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- Методы установления причинной связи
- Метод сходства
- Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- § 14. Дедукция и индукция в учебном процессе
- Задачи к теме “Умозаключение”
- 3. Во всех городах за полярным кругом бывают белые ночи.
- Все летучие мыши - представители отряда рукокрылых.
- Глава VI логические основы теории аргументации
- § 1. Понятие доказательства
- Структура доказательства: тезис, аргументы, демонстрация
- Виды аргументов
- § 2. Прямое и непрямое (косвенное) доказательства
- § 3. Понятие опровержения
- 1. Опровержение тезиса (прямое и косвенное)
- II. Критика аргументов
- III. Выявление несостоятельности демонстрации
- § 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- Правила по отношению к тезису
- Ошибки относительно доказываемого тезиса
- Правила по отношению к аргументам
- Правило по отношению формы обоснования тезиса (демонстрации)
- Ошибки в форме доказательства
- 3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- § 5. Понятие о софизмах и логических парадоксах
- Понятие о логических парадоксах
- Парадоксы теории множеств
- § 6. Искусство ведения дискуссии
- Задачи к теме
- 1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- 1Цит. По: Русская литература. Л., 1980. С. 55.
- 2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- 3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- Глава VII аналогия и гипотеза. Их роль в учебном процессе
- § 1. Умозаключение по аналогии и его виды
- Строгая аналогия
- Нестрогая аналогия
- Ложная аналогия
- § 2. Гипотеза и ее виды
- Виды гипотез
- § 3. Построение гипотез
- Способы подтверждения гипотез бывают такие:
- Примеры гипотез, применяющихся на уроках в школе
- Глава VIII роль логики в процессе обучения
- § 1. Логическая структура вопроса
- Виды вопросов
- Предпосылки вопросов
- Правила постановки простых и сложных вопросов
- Логическая структура и виды ответов
- § 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- § 3. Развитие логического мышления младших школьников
- Обобщение:
- Ограничение:
- § 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- Развитие логического мышления на уроках математики
- Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- § 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- Формы активизации мыслительной деятельности , студентов в учебном процессе
- Семинары и самостоятельные работы студентов
- РРис.23
- Все лисицы - позвоночные.
- 2.Все птицы имеют оперение.
- Контрольные работы
- Вопросы экзаменационных билетов
- Кроссворд по теме “Понятие”
- Ответы на кроссворд
- Формы внеаудиторной работы со студентами
- § 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- Кроссворд, составленный ученицей 11 класса Татьяной и.'
- Ответы на кроссворд
- По горизонтали:
- Ответы на кроссворд
- Тест айзенка (стр. 342-358)
- § 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- II. Требования к оформлению работы
- 1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- 1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика
- Заключение
- 1. Предмет и значение логики.
- 2. Понятие.
- 3. Суждение.
- 4. Умозаключение.
- 5. Логические основы теории аргументации.
- Вопрос 260-265
- Еебулид 383
- ИвинА.А.97,43”
- ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- Сократ 380,381
- Свинцов в. И. Логика. М., 1987.
- II. Популярная литература
- III. Литература по педагогическим приложениям логики