logo
Getmanova_A_D_-_Logika

Семантические категории

Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложения: повествовательные, побудительные, вопросительные; 2) выражения, играющие определенную роль в составе предложений: дескриптивные и логические термины'.

Суждения выражаются в форме повествовательных предложе­ний (например: “Киев - город”, “Корова - млекопитающее”). В этих суждениях субъектами соответственно являются “Киев”, “коро­ва”, а предикатами - “город”, “млекопитающее”.

________________________

'См.: ВойшвиллоЕ. К. Понятие как форма мышления. М., 1989. С. 13-14.

24

К дескриптивным (описательным) терминам относятся:

1. Имена предметов- слова или словосочетания, обозначаю­щие единичные (материальные или идеальные) предметы (“Ари­стотель”, “первый космонавт”, “7”) или классы однородных пред­метов (например, “пароход”, “книга”, “стихотворение”, “засу­ха”, “гвардейский полк” и др.).

В суждении “Енисей - река Сибири” встречаются три имени предмета: “Енисей”, “река”, “Сибирь”. Имя предмета “Енисей” выполняет роль субъекта, а имена “река” и “Сибирь” входят в предикат (“река Сибири”) как его две составные части.

2. Предикаторы (знаки предметно-пропозициональных функций) - слова и словосочетания, обозначающие свойства предметов или отношения между предметами (например, “порядочный”, “синий”, “электропроводный”, “есть город”, “мень­ше”, “есть число”, “есть планета” и др.). Предикаторы быва­ют одноместные и многоместные. Одноместные предикаторы обозначают свойства (например, “талантливый”, “горький”, “большой”). Многоместные предикаторы обозначают (выра­жают) отношения. Двухместными предикаторами являются: “равен”, “больше”, “мать”, “помнит” и др. Например: “Пло­щадь земельного участка А равна площади земельного участ­ка В”, “Мария Васильевна - мать Сережи”. Пример трехмест­ного предикатора - “между” (например: “Город Москва распо­ложен между городами Санкт-Петербург и Ростов-на-Дону”).

3. Функциональные знаки (знаки именных функций) - выра­жения, обозначающие предметные функции, операции (“сtg ”, “+”,“” и др.).

Кроме того, в языке встречаются так называемые логические термины (логические постоянные, или логические константы).

В естественном языке имеются слова и словосочетания: “и”, “или”, “если... то”, “эквивалентно”, “равносильно”, “не”, “неверно, что”, “всякий” (“каждый”, “все”), “некоторые”, “кроме”, “только”, “тот... который”, “ни... ни”, “хотя... но”, “если и только если” и мно­гие другие, выражающие логические константы (постоянные).

В символической (или математической) логике в качестве таких констант обычно используются конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и су­ществования и некоторые другие.

25

В символической логике логические термины (логические постоянные) записываются следующим образом:

-,^ , v, ύ , →, ≡.

Конъюнкция соответствует сонму “и”. Конъюнктивное вы­сказывание обозначается: a ^ b, или а • b, или а & b (например, “Закончились лекции (а), и студенты пошли домой (b)”1.

Дизъюнкция соответствует союзу “или”. Дизъюнктивное сужде­ние обозначается: a v Ь (нестрогая дизъюнкция) и a v b (строгая дизъюнкция); отличие их в том, что при строгой дизъюнкции слож­ное суждение истинно только в том случае, когда истинно одно из составляющих суждений, но не оба, а при нестрогой дизъюнкции истинными могут быть одновременно оба суждения. “Он шахма­тист или футболист” обозначается как а v b. “Сейчас Петров на­ходится дома или в институте” обозначается как а b.

Импликация соответствует союзу “если... то”. Условное суждение обозначается: аb. (например: “Если бу­дет хорошая погода, то мы пойдем в лес”).

Эквиваленция соответствует словам “если и только если”, “тогда и только тогда, когда”, “эквивалентно”. Эквивалентное высказывание обозначается: а ≡ b, или аb, или а→← b.

Отрицание соответствует словам “не”, “неверно, что”. Отрицание высказывания обозначается: ā, ┐а, [например: “Па­дает снег” (а); “Неверно, что падает снег” ( ā )].

Квантор общности обозначается и соответствует кванторным словам “все” (“всякий”, “каждый”, “ни один”). хР(х) - за­пись в математической логике. (Например, в суждении “Все крас­ные мухоморы ядовиты” кванторное слово “все”).

Квантор существования обозначается и соответствует сло­вам “некоторые”, “существует”. хР(х) - запись в математической логике. (Например, в суждениях “Некоторые люди имеют выс­шее образование” или “Существуют люди, которые имеют выс­шее образование” - кванторные слова выделены курсивом).

Выразим в форме схемы разновидности семантических катего­рий (рис.2).

________________________________________

1Здесь и в дальнейшем буквами а, b, с и т. д. обозначаются переменные высказывания (суждения).

2 6

Рис.2