§ 4. Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложными суждениями, образуемыми из простых посредством логических связок (или операций) - конъюнкции, дизъюнкции, импликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Проанализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.
Конъюнкция (знак “^”) выражается союзами: “и”, “а”, “но”, “да”, “хотя”, “который”, “зато”, “однако”, “не только..., но и” и др. В логике высказываний знак “”соединяет простые высказывания, образуя из них сложные. В естественном языке союз “и” и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и иные части речи. Например: “Дети пели и смеялись” (а ^ b) ; “Интересная и красиво оформленная книга лежит на столе”. Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией:
“Интересная книга лежит на столе” и “Красиво оформленная книга лежит на столе”, так как создается впечатление, что на столе лежат две книги, а не одна.
В логике высказываний действует закон коммутативности конъюнкции (а ^ b) = ( b^а). В естественном русском языке такого закона нет, так как действует фактор времени. Там, где учитывается последовательность во времени, употребление союза “и” некоммутативно. Поэтому не будут эквивалентными, например, такие два высказывания: 1) “Джейн вышла замуж, и у нее родился ребенок” и 2) “У Джейн родился ребенок, и она вышла замуж”.
В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например: “Сверкнула молния, загремел гром, пошел дождь”.
О выражении конъюнкции средствами естественного языка пишет С. Клини в книге “Математическая логика”. В разделе “Анализ рассуждений” он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены
86
символами “^” (или “&”). Формула А ^ В в естественном языке может выражаться так:
“Не только А, но и В Как А, так и В.
В, хотя и А. А вместе с В.
В, несмотря на А А, в то время как В”'.
Придумать примеры на все эти структуры предоставляем читателю.
В естественном (русском) языке дизъюнкция (обозначенная а b и а ύ b) выражается союзами: “или”, “либо”, “то ли..., то ли” и др. Например: “Вечером я пойду в кино или в библиотеку”; “Это животное принадлежит либо к позвоночным, либо к беспозвоночным”; “Сочинение будет то ли по произведениям Л. Н. Толстого, то ли по произведениям Ф. М. Достоевского”.
В логике высказываний различается нестрогая дизъюнкция, например: “Я подарю ей цветы или книги” (а b) и строгая дизъюнкция, например: “Данный студент находится в институте или дома” (а ύ b). В нестрогой дизъюнкции члены дизъюнкции не исключают друг друга, а в строгой - исключают. Для обоих видов дизъюнкции действует закон коммутативности:
в естественном языке эта эквивалентность сохраняется. Например, суждение “Я куплю масло или хлеб” эквивалентно суждению “Я куплю хлеб или масло”.
С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (А В) и эквиваленция (А~В)2. (Буквами А и В обозначены переменные высказывания).
Приведем структуры и соответствующие им примеры, иллюстрирующие разнообразные способы выражения импликации А В (где А - антецедент, а В - консеквент):
1. Если А. то В. Если пойдет дождь, то экскурсия в лес не состоится.
2. Коль скоро А, то В. Коль скоро приближается буря, то медузы приплывают к берегу моря.
_______________________________
'Клини С. Математическая логика. М., 1973. С. 81.
2Клини С. Математическая логика. М., 1973. С. 81.
87
3. В случае А имеет место В.
В случае, когда наступает инфляция, имеет место снижение жизненного уровня трудящихся.
4. Для В достаточно А.
Для того чтобы металл расплавить, достаточно его нагреть до температуры плавления.
5. Для А необходимо В.
Для сохранения мира на Земле необходимо увеличить усилия всех государств в борьбе за мир.
6. А (материально) влечет В.
Овладение искусством общения влечет улучшение межличностных отношений.
7. А, только если В.
Ваши коммуникации будут успешнее, только если вы займете позицию: “У меня все в порядке - у тебя все в порядке”'.
8. В, если А.
Мы поедем отдыхать в санаторий, если у нас будет путевка.
Приведем структуры и соответствующие им примеры разнообразных способов выражения эквиваленции:
1. А, если и только если В.
Посевная пройдет успешно, если и только если вовремя будут отремонтированы сельскохозяйственные машины.
2. Если А, то В, и обратно.
“Если вы твердо уверены, что ваши аргументы убедительнее, но ваш коллега, стоящий на той же ступеньке служебной лестницы, не хочет этого замечать, то избегайте призывать на помощь вашего начальника”2, и обратно.
3. А, если В, и В, если А.
Всякое число является четным, если оно делится на 2, и число делится на 2, если оно является четным.
4. Для А необходимо и достаточно В. Для того, чтобы число без остатка делилось на 5, необходимо и достаточно, чтобы его последняя цифра была 0 или 5.
5. А тогда и только тогда, когда В.
_____________________________
'Шмидт Р. Искусство общения // Пер. с нем. М., 1992. С. 59.
Tам же. С. 48.
88
B коллективе возникает хороший психологический климат тогда и только тогда, когда будут однозначно определены задачи, ответственность и компетенция каждого сотрудника'.
Из приведенных выше схем и соответствующих им высказываний с конкретным разнообразным содержанием становится ясно, насколько многогранны в естественном языке (в частности, русском) средства выражения импликации и эквиваленции и других логических связок (логических терминов). Это можно сказать и о других естественных языках2.
Импликация (а 6) не совсем соответствует по смыслу союзу “если..., то” естественного языка, так как в ней может отсутствовать содержательная связь между суждениями а и b. В логике высказываний законом является формула: (а b) = (ā b) Но в естественном языке дело обстоит иначе. Иногда союз “если..., то” выражает не импликацию, а конъюнкцию. Например: “Если вчера было пасмурно, то сегодня ярко светит солнце”. Это сложное суждение выражается формулой а^b.
В логике, кроме логических связок, для выражения общих и частных суждений используется квантор общности и квантор существования. Запись с квантором общности хР(x) обычно читается так: “Все х (из некоторой области объектов) обладают свойством Р”, а запись с квантором существования хР(х} читается так: “Существуют такие х (в данной области), которые обладают свойством Р”, Например, х (х > 100) читается так: “Существуют такие х, которые больше 100”, где под х подразумевают числа. В русском языке квантор общности выражается словами: “все”, “всякий”, “каждый”, “ни один” и др. Квантор существования выражается словами: “некоторые”, “существуют”, “большинство”, “меньшинство”, “только некоторые”, “иногда”, “тот, который”, “не все”, “многие”, “немало”, “немногие”, “много”, “почти все” и др.
С. Клини пишет о том, что, переводя выражения обычного языка с помощью табличных пропозициональных связок, мы лишаемся некоторых оттенков смысла, но зато выигрываем в точности.
Контрфактическими называют условные высказывания, выраженные в сослагательном наклонении. Например: “Если бы
____________________________
'Шмидт Р. Искусство общения // Пер. с нем. М., 1992. С. 48.
2B качестве самостоятельного задания рекомендуем рассмотреть выражение логических связок в каком-либо другом языке или показать это на произведениях какого-либо писателя.
89
на Земле не было кислорода, то жизнь на ней была бы невозможна”; “Если бы водитель не нарушил правила, то авария бы не произошла”. В импликации аb переменная а является основанием (она называется антецедентом). Переменная b - следствием (заключением), она называется консеквентам.
Сослагательное наклонение показывает, что антецедент и консеквент в таких высказываниях ложны, т. е. не соответствуют реальному положению дел. Однако, подобно всем другим высказываниям, контрфактическое высказывание в целом может быть истинным. Оно истинно, если между его антецедентом и консеквентом имеется связь такого рода, что истинность антецедента влечет истинность консеквента. И ложно, если такой связи нет. Например, высказывание “Если бы сейчас была ночь, то на улице было бы темно” истинно, а высказывание “Если бы сейчас была ночь, то на улице было бы светло” ложно (для несеверных широт, так как на Севере летом бывают белые ночи). Поскольку антецедент и консеквент контрфактического высказывания оба ложны, установление их истинности связано с серьезными трудностями.
Контрфактическое высказывание имеет структуру: “Если бы а, то было бы b”. Контрфактические высказывания широко используются в научной практике. Так, например, историки для оценки событий, намерений, мотивов, политических планов и т. п. часто употребляют контрфактические предложения, говорящие, то могло бы быть, если бы дело обстояло не так, как это произошло в действительности. Контрфактичесиое предложение, изъявительные формы антецедента и консеквента которого обозначены соответственно через а и b, принято записывать как а b.
Примером сложного контрфактического высказывания является следующее истинное высказывание: “Последствия стихии могли быть тяжелее, если бы не мужество и сплоченность людей, четкая организация спасательных работ, неукоснительное выполнение всеми порученного дела”. Чтобы записать формулу этого сложного контрфактического высказывания, надо его сначала привести к четкой логической форме. Она такая: “Если бы
90
не было мужества и сплоченности людей, четкой организации спасательных работ, неукоснительного выполнения всеми порученного дела, то последствия стихии могли бы быть тяжелее”. формула этого контрфактического высказывания такая:
(а^b^с^d) е.
Здесь а обозначает высказывание “Мужество людей отсутствовало”, b - высказывание “Сплоченность людей отсутствовала”, с - “Четкая организация работ отсутствовал”, d- “Неукоснительное выполнение всеми порученного дела отсутствовало”. Все четыре высказывания соединены знаками конъюнкции. Знак “ ” обозначает импликацию в контрфактическом высказывании, соответствующую союзу “если бы..., то было бы”. Буква е обозначает высказывание “Последствия стихии оказались тяжелее”. Следует заметить, что знак “” отсутствует в классической логике высказываний.
Контрфактические высказывания довольно часто встречаются не только в научной, но и в художественной литературе -как в прозе, так и в поэзии.
В практике математических и иных рассуждений имеются понятия “необходимое условие” и “достаточное условие”. Условие называется необходимым, если оно вытекает из заключения (следствия). Условие называется достаточным, если; .из него вытекает заключение (следствие). Ниже предлагаются задачи, требующие в каждом из следующих предложений вместо многоточия поставить слова: “необходимо”, “достаточно” или “необходимо и достаточно”.
1. Для того чтобы сумма двух целых чисел была четным числом ... чтобы каждое слагаемое было четным.
2. Для того чтобы число делилось на 15 ... чтобы оно делилось на 5.
3. Для того чтобы произведение (х-3)*(х+2)*(х-5) было равно 0,... чтобы х = 3.
4. Для того чтобы четырехугольник был прямоугольником ... чтобы все его углы были равны.
91
- Введение
- Глава I предмет и значение логики
- § 1. Формы познания Формы чувственного познания
- Формы абстрактного мышления
- Растения делятся или на однолетние или на многолетние.
- Особенности абстрактного мышления
- § 2. Понятие логической формы и логического закона
- Понятие логической формы
- Логические законы
- Истинность мысли и формальная правильность рассуждений
- Все металлы - твердые тела.
- Все небесные тела – планеты
- Все тигры полосатые.
- 4. Все ушастые тюлени – ластоногие.
- Теоретическое и практическое значение логики
- § 3. Логика и язык
- Семантические категории
- Задачи к теме “Предмет и значение логики”
- Глава II понятие
- § 1. Понятие как форма мышления
- Содержание и объем понятия
- Закон обратного отношения между объемами и содержаниями понятий
- § 2. Отношения между понятиями
- Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- Типы несовместимости: соподчинение, противоположность, противоречие
- § 3. Определение понятий
- Правила явного определения. Ошибки, возможные в определении
- Неявные определения
- Определение через аксиомы
- Использование определений понятий в процессе обучения
- Приемы, сходные с определением понятий
- § 4. Деление понятий. Классификация
- Правила деления понятий
- Виды деления: по видообразующему признаку и дихотомическое деление
- Классификация
- Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- § 5. Ограничение и обобщение понятий
- II. Определить отношения между следующими понятиями:
- Глава III суждение
- § 1. Общая характеристика суждения
- Суждение и предложение
- § 2. Простое суждение
- Виды простых ассерторических суждений
- 1. Суждения свойства (атрибутивные).
- 2. Суждения с отношениями.
- Категорические суждения и их виды (деление по количеству и качеству)
- Объединенная классификация простых категорических суждений по количеству и качеству
- Распределенность терминов в категорических суждениях
- § 3. Сложное суждение и его виды. Исчисление высказываний
- Способы отрицания суждений
- Отрицание сложных суждении
- Исчисление высказываний
- § 4. Выражение логических связок (логических постоянных) в естественном языке
- §5.Отношения между суждениями по значениям истинности
- Противоположность (контрарность)
- § Б. Деление суждений по модальности
- Задачи к теме “Суждение”
- VII. Являются ли суждениями следующие предложения?
- Глава IV законы (принципы) правильного мышления
- § 1. Понятие логического закона
- § 2. Законы логики и их роль в познании Закон тождества
- Закон непротиворечия
- Закон исключенного третьего
- Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- Закон достаточного основания
- § 3. Использование формально-логических законов в процессе обучения
- Задачи к теме “Законы (принципы) правильного мышления”
- Глава V умозаключение
- § 1. Общее понятие об умозаключении
- Понятие логического следования
- § 2. Дедуктивные умозаключения
- Понятие правила вывода
- § 3. Выводы из категорических суждений посредством их преобразования
- S есть р
- § 4. Простой категорический силлогизм1
- Фигуры и модусы категорического силлогизма
- Особые правила фигур
- Модусы категорического силлогизма.
- Правила категорического силлогизма
- /. Правила терминов
- //. Правила посылок
- § 5. Сокращенный категорический силлогизм (энтимема)
- § 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- Все с суть d. Сорит (с общими посылками)
- Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- § 7. Условные умозаключения
- I. Утверждающий модус (modus ponens).
- II. Отрицающий модус (modus tollens).
- Первый вероятностный модус
- Структура его: Cхема:
- Второй вероятностный модус
- § 8. Разделительные умозаключения
- § 9. Условно-разделительные (лемматические) умозаключения
- Дилемма1
- Cхема Формула:
- Трилемма
- § 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- 1. В умозаключении пропущено заключение
- 2. В умозаключении пропущена одна из посылок
- 1. Простая контрапозиция.
- 2. Сложная контрапозиция.
- § 11. Непрямые (косвенные) выводы
- 1. Рассуждение по правилу введения импликации
- 2. Правило сведения “к абсурду”
- 3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- § 12. Индуктивные умозаключения и их виды Логическая природа индукции
- Математическая индукция
- Виды неполной индукции
- 2. Индукция через анализ и отбор фактов
- Понятие вероятности
- 3. Научная индукция
- § 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- Методы установления причинной связи
- Метод сходства
- Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- § 14. Дедукция и индукция в учебном процессе
- Задачи к теме “Умозаключение”
- 3. Во всех городах за полярным кругом бывают белые ночи.
- Все летучие мыши - представители отряда рукокрылых.
- Глава VI логические основы теории аргументации
- § 1. Понятие доказательства
- Структура доказательства: тезис, аргументы, демонстрация
- Виды аргументов
- § 2. Прямое и непрямое (косвенное) доказательства
- § 3. Понятие опровержения
- 1. Опровержение тезиса (прямое и косвенное)
- II. Критика аргументов
- III. Выявление несостоятельности демонстрации
- § 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- Правила по отношению к тезису
- Ошибки относительно доказываемого тезиса
- Правила по отношению к аргументам
- Правило по отношению формы обоснования тезиса (демонстрации)
- Ошибки в форме доказательства
- 3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- § 5. Понятие о софизмах и логических парадоксах
- Понятие о логических парадоксах
- Парадоксы теории множеств
- § 6. Искусство ведения дискуссии
- Задачи к теме
- 1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- 1Цит. По: Русская литература. Л., 1980. С. 55.
- 2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- 3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- Глава VII аналогия и гипотеза. Их роль в учебном процессе
- § 1. Умозаключение по аналогии и его виды
- Строгая аналогия
- Нестрогая аналогия
- Ложная аналогия
- § 2. Гипотеза и ее виды
- Виды гипотез
- § 3. Построение гипотез
- Способы подтверждения гипотез бывают такие:
- Примеры гипотез, применяющихся на уроках в школе
- Глава VIII роль логики в процессе обучения
- § 1. Логическая структура вопроса
- Виды вопросов
- Предпосылки вопросов
- Правила постановки простых и сложных вопросов
- Логическая структура и виды ответов
- § 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- § 3. Развитие логического мышления младших школьников
- Обобщение:
- Ограничение:
- § 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- Развитие логического мышления на уроках математики
- Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- § 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- Формы активизации мыслительной деятельности , студентов в учебном процессе
- Семинары и самостоятельные работы студентов
- РРис.23
- Все лисицы - позвоночные.
- 2.Все птицы имеют оперение.
- Контрольные работы
- Вопросы экзаменационных билетов
- Кроссворд по теме “Понятие”
- Ответы на кроссворд
- Формы внеаудиторной работы со студентами
- § 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- Кроссворд, составленный ученицей 11 класса Татьяной и.'
- Ответы на кроссворд
- По горизонтали:
- Ответы на кроссворд
- Тест айзенка (стр. 342-358)
- § 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- II. Требования к оформлению работы
- 1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- 1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика
- Заключение
- 1. Предмет и значение логики.
- 2. Понятие.
- 3. Суждение.
- 4. Умозаключение.
- 5. Логические основы теории аргументации.
- Вопрос 260-265
- Еебулид 383
- ИвинА.А.97,43”
- ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- Сократ 380,381
- Свинцов в. И. Логика. М., 1987.
- II. Популярная литература
- III. Литература по педагогическим приложениям логики