Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
Рекомендуется провести 2-3 внеклассных занятия (или занятия в группе продленного дня) с учащимися 2-10 классов по темам “Суждение” и “Умозаключение”. Желательно сначала провести занятия, на которых объясняется материал, а затем -контрольного характера.
По теме “Суждение” рекомендуется объяснить следующий материал:
1. Определение суждения. Структура простого суждения.
2. Виды простых суждений.
3. Объединенная классификация простых категорических суждений по количеству и качеству (А, I, E, О).
4. Сложное суждение и его виды:
363
(a^b),(a b),(a ύ b),(a→b),(ab).
Отрицание суждения( ).
В зависимости от класса методика объяснения и приведения примеров разрабатывается самим студентом-практикантом. Для начальных классов она будет одной, для ср ύ едних - другой, а для старших (например, 10 и 11 классов) приближается к вузовской методике со внесенными практикантом упрощениями примеров. Приведем примерное объяснение материала для учащихся средних классов:
1. Определение суждения дано в учебнике (с. 12, 68). Примеры можно взять из учебника на с. 12,13,60 или сформулировать аналогичные. Затем следует предложить учащимся придумать свои примеры суждения.
2. Структура суждения: субъект, предикат, связка, кванторное слово - разъясняется на примерах. Следует обратить внимание на то, что субъект суждения и подлежащее не всегда совпадают (аналогично - предикат суждения и сказуемое).
3. Объяснение видов простых суждений и суждений А, I, E, О, как нам представляется, не вызовет затруднений, поэтому с методикой работы над ними студент должен справиться самостоятельно, опираясь на настоящий учебник (см. с. 71-77).
Раздел “Сложное суждение и его виды” потребует введения логических знаков:
^,, ύ,→,,. Их можно объяснить на следующих примерах (на объяснение потребуется 12-15 минут).
1. “Прозрачный лес один чернеет, и ель сквозь иней зеленеет, и речка подо льдом блестит” (А. С. Пушкин). а ^ b ^ с (знак “ ^ ” обозначает союз “и”).
2. Этот юноша - футболист, или он шахматист. a b (“ ” - союз “или” нестрогий).
3. Я поеду на Юг поездом или полечу самолетом. а ύ b (“ ύ ” - союз “или” строгий: в каждый данный момент времени можно делать только одно).
4. Если будет хорошая погода, то мы пойдем на экскурсию. а → b (“→ ”- союз “если,... то”).
364
5. а b (Знак “ ” обозначает “тождественно”, “эквивалентно”) .
Ни один кит не является рыбой. Ни одна рыба не является китом.
6. Я завтра пойду на тренировку (а). Я завтра не пойду на тренировку( ).
Отрицание суждения а обозначается через . Учащиеся должны придумать свои примеры на каждый вид логических связок (1-6). После этого студент предлагает своим учащимся ряд задач, требующих записи сложного суждения в виде формулы. Например: 1. “Если мальчик любит мыло и зубной порошок, этот мальчик очень милый, поступает хорошо” (В. Маяковский). Формула (а^ b)→(с^ d). 2. Если я сегодня не подготовлю материал по истории, то я завтра не пойду на каток, а буду заниматься дома историей: а → (^ с).
В качестве упражнений можно взять задачи данного учебника, приведенные на с. 102-103, задание III (1-3), ответы для которых будут следующими:
1. Формула первого сложного суждения: а ^ b ^ с; формула второго d ^ е. _
2. а^ b^ с^ d^ .
3. а^ b^ с.
Для учащихся старших классов можно в качестве примеров взять и задачи на с. 104-105, задание VII (1-7).
По теме “Умозаключение” рекомендуется объяснить следующий материал:
1. Определение и структура умозаключений.
2. Дедуктивные умозаключения:
а) категорический силлогизм;
б) энтимема;
в) условно-категорические умозаключения;
г) разделительно-категорические умозаключения;
д) конструктивные дилеммы.
Рекомендуем привести 2-3 примера правильно построенных категорических силлогизмов, дающих истинное заключение, и примеры неправильно построенных, дающих вероятное заключение, и обратить внимание учащихся на возможные ошибки.
365
Все металлы теплопроводны. Все тигры полосатые.
Медь – металл. Это животное полосатое.
Медь теплопроводна. Это животное – тигр.
Учащиеся смогут привести аналогичные примеры. Энтимема объясняется школьникам на только что приведенных самим студентом или учащимся примерах. Пропускается либо большая посылка, либо меньшая, либо заключение. Разъясняется, что мы мыслим каждый день с помощью энтимем и реже - с помощью категорических силлогизмов. Условно-категорические и разделительно-категорические умозаключения разъясняются на примерах и строятся соответствующие формулы. Показываются примеры на достоверные и на вероятные модусы условно-категорических умозаключений на материале школьных учебников.
Разъясняя разделительно-категорические умозаключения, практикант должен обратить внимание, чтобы в разделительной посылке были перечислены все возможные альтернативы, т. е. деление было бы полным (для отрицающе-утверждающего модуса).
Отчет студента о проведенной работе должен состоять из следующих разделов:
1. Описать проведенные с учащимися занятия.
2. Сделать анализ ошибок (по произвольной схеме).
3. Предъявить письменные работы учащихся с указанием фамилии и имени учащегося, школы и класса, даты проведения. Письменный отчет о проведенной работе по логике будет служить одним из важнейших показателей при оценке знаний студента по логике и свидетельствовать о его умении применить полученные логические знания на практике (связь теории с практикой), а поэтому будет учитываться при проведении экзамена или зачета по курсу логики.
Опыт проведения педпрактики по логике в школах г. Москвы показал, что многие учителя школ сами логику не изучали, не знают ее применения в учебном процессе, а некоторые просто не понимают, зачем она нужна учащимся. Школьники встретили изучение логики с большим интересом, многие просиди студентов еще провести с ними такого рода занятия. Педагогам, как никому другому, надо развивать логическое, творческое мышление своих
366
учащихся, а они сами не изучали логики. Парадокс! Его можно и нужно разрешить. Преподаватель логики пединститута мог бы написать о результатах проведенной им новой, оригинальной работы с учащимися средних и старших классов в журналы “Математика в школе”, “История в школе”, “Физика в школе” и др. Так как в этих журналах публикуется мало статей о развитии логического мышления учащихся, то такая работа преподавателя логики была бы очень актуальна, ценна и полезна как для учителей школ, так и для студентов пединститутов и педучилищ.
Студенты МПГУ им. В. И. Ленина. провели огромную оригинальную работу, которая только что была показана выше. Насколько нам известно, в других педвузах подобная работа не ведется. 200 студентов смогли дать уроки по логике более 2500 учащимся.
Несколько лет назад мы сформулировали педагогическую гипотезу - логику надо вводить как обязательный предмет в начальных классах средней школы. Хорошо логику воспринимают уже учащиеся 2 класса. Эта гипотеза подучила свое научное и методическое подтверждения. Чтобы ее подтвердить, автор данного учебника начал преподавать логику сначала в 5, 8, 10 и 11 классах средней школы № 583 г. Москвы по своим программам. Следует отметить, что учащиеся как 8, так и 10 и 11 классов с одинаковой быстротой овладевают теоретическим материалом и решают логические задачи. Контрольные, проведенные по тем же вариантам и тем же задачам, которые давались для студентов I курса педвуза, свидетельствуют о том, что логику необходимо вводить в курс средней школы, и не в 11 классе, а раньше.
В той же школе в течение трех четвертей учебного года логику преподавал доктор философских наук, профессор А. Л. Никифоров в двух 10 классах экономического профиля. Его учащиеся успешно овладели основами логики, с интересом решали задачи и приводили свои примеры на материале экономики.
Оригинальными были занятия по логике А. Д. Гетмановой в этой же школе с учащимися 5 класса. Это был годовой курс. Такой огромной заинтересованности, быстроты мышления и оригинальности я и не предполагала. Ученикам-пятиклассникам и мне эти уроки приносили настоящую интеллектуальную радость, подъем, часто они не хотели уходить, хотя эти были
6-й и
367
7-й уроки. Начало было в 5 классе не совсем удачном: весь класс не “потянул” обязательный курс логики, поэтому мы перешли на факультативные занятия, которые посещали 10-12 человек. Но это были действительно заинтересованные ученики-энтузиасты, они настаивали на проведении уроков логики и боялись, что занятия могут прерваться.
Материал по логике пятиклассникам я специально давала по программе, приближенной к 10 классу, и они все понимали, решали, приводили массу оригинальных примеров, рассуждений. Это часто был праздник мысли, интеллекта и для них, и для меня.
Особенно эффективны были последние два урока, когда мы решали задачи из книги известного психолога Г. Айзенка “Проверьте свои интеллектуальные способности” (Рига., 1992). Некоторые задачи воспроизведены здесь в фотокопии. Пятиклассники решали их быстрее, интереснее, чем взрослые. В книге Айзенка написано, что эти задачи предназначены людям от 18 до 50-60 лет, но мои 11-летние ученики смело опровергли знаменитого автора: они отлично справлялись с задачами, лишь изредка заглядывая в данный в книге ответ, если не могли решить задачу.
Все учащиеся 5 класса получили годовой зачет с оценкой “отлично”. Я же получала огромный эмоциональный положительный заряд от каждого общения с этими ребятами (в основном этот были мальчики и 3 девочки). Ум у пятиклассников острый, подвижный, незакостеневший.
Ученики 10 класса школы № 248 (школа с профилирующим преподаванием английского языка), где логика преподавалась мною факультативно, также поразили меня своей общей эрудицией, большим чувством юмора. Уроки по логике часто проходили очень весело, проводилось много остроумных примеров, анекдотов из литературных источников, веселых историй из школьной жизни. Впечатление от этих уроков осталось самым светлым, иногда они живее схватывали материал и реагировали даже острее, чем отдельные студенты.
Однако, формирование логической культуры желательно начинать не со старших, а с первого класса начальной школы. Мой опыт преподавания логики в трех школах г. Москвы и Московской
368
области в 1,2,3,4,5 классах убедительно доказал, что ученики начальных классов успешно овладевают логическими знаниями. Уроки базируются на большом, ярко иллюстрированном художественном материале из детских народных сказок, детской художественной литературы, природоведения, математики и других предметов.
Неоднократные наблюдения в течение последних лет моего преподавания логики в начальных классах показали, что ученикам 1-3 классов доставляет интеллектуальное удовольствие решение задач на нахождение отношений между понятиями (например, “игрушка”, “заводная игрушка”, “заводной автомобиль”, “кукла”, “кукла Барби”). Используя разноцветные кружки (круги Эйлера), приготовленные ими на уроках труда, дети решают аналогичные задачи. Уже на первом и втором уроках первоклассники в стихотворении находят понятия и суждения, почти безошибочно отличая одну форму мышления от другой. В дальнейшем они придумывают свои примеры на различные виды умозаключений. Сложные суждения учащиеся выражают формулами типа (^)→(с ύ d) или более сложными и, наоборот, на основе предложенной формулы дают пример своего сложного суждения.
На уроках решались шарады, отгадывались загадки и кроссворды, применялись многочисленные ярко раскрашенные рисунки, изготовленные студентами педагогических университетов г. Москвы, пелись песни, использовались подвижные игры и другие разнообразные методы обучения.
Курс логики в средней школе изучается в основном в 10 и 11 классах. Опыт такого преподавания намного шире, чем у младших школьников. Имеется программа для общеобразовательных учреждений “Логика” (58 часов), которая рекомендована Главным управлением развития общего среднего образования Министерства образования Российской Федерации (М., Просвещение, 1994). В соответствии с этой программой написано учебное пособие “Логика, 10-11-е классы”, в которой наряду с теоретическими разделами даются задачи по курсу логики и занимательные задачи. Авторами являются доктора философских наук, профессора А. Д. Гетманова, А. Л. Никифоров, М. И. Панов, А. И. Уемов, Б. Л. Яшин.
369
Ученики 10-11 классов школы № 356 и Люблинской гимназии (г. Москва) изготовили много интересных, оригинально иллюстрированных работ и наглядных пособий, а после изучения спецкурса по теории аргументации учащиеся гимназии провели ряд диспутов на молодежные темы.
В. А. Ширнин преподает логику в общеэстетичесиой школе-гимназии № 676 г. Москвы и средней школе № 26 г. Воскресенска главным образом в 10-11 классах и в 5-8 классах. В. А. Ширнин применяет необычные формы ведения уроков и подбирает запоминающиеся примеры для иллюстрации теоретического материала. Два года в школе-гимназии № 676 ребята в качестве экзамена по выбору сдают логику в форме защиты рефератов на темы: “Логические основы формирования понятий (на основе понятия “мода”)”, “Популярное объяснение младшим школьникам, что такое умозаключение и дедукция (с иллюстрациями автора) и др.
В марте 1994 года Ширнин провел трехдневный семинар для 30 учителей Воскресенского района, желающих преподавать логику в школе. Ведущий семинара Ширнин получил положительные отзывы, и слушатели изъявили желание продолжить эти занятия. Участники семинара высоко оценили указанное выше учебное пособие по логике для 10-11 классов и выразили готовность заниматься по данному пособию с учащимися своих школ.
Преподаватель Л. П. Заросилова в Московском музыкально-театральном лицее в течение 1991/92 уч. г. проводила эксперимент по преподаванию логики учащимся 1-11 классов. Были отмечены успехи учащихся и их определенный, логически оформленный стиль высказывания по общим и по специальным предметам: театроведению, сольфеджио, ритмике, эстетике и др.
Итак, материал, изложенный в этой главе, позволяет сделать вывод, что логику как обязательный предмет надо вводить в средней школе и во всех типах педагогических учебных заведений, ибо логика лежит в основе гуманитаризации системы народного образования. И это - главное направление логического образования.
В соответствии с ним изложен материал в данном учебнике. Другое направление заключается в том, чтобы дать лишь
370
основы логических знаний и сделать это в процессе преподавания школьных дисциплин: математики, информатики, русского языка, физики, биологии, истории, литературы и др. Однако накопленного опыта такого обучения на сегодняшний день недостаточно. И хорошо, что работа в этом направлении ведется.
Преподает логику во взаимосвязи с информатикой Путилло Л. В. (лицей, г. Лобня Моск. обл.). В школах г. Москвы преподают логику во взаимосвязи с информатикой учителя: Бримечкова В. А. (шк. № 134), Горшкова Г. В. (шк. № 947), Танцорова М. В. (шк. № 639), Трофимова М. В. (шк. № 876). Ничикова Е. В. связывает преподавание логики с психологией, а Курчаткина И. Е. (шк. № 134) логические знания дает на уроках физики. Тихомирова О. В. преподает логику студентам-юристам в тесной связи с юриспруденцией, правом и другими юридическими знаниями, знаниями. Учитель школы № 931 г. Москвы Миронова Е. В. преподает логику в 11 педклассе, связывая логические знания с материалом русского языка и литературы. Щеколдина Н. С. (шк. № 789) в 5-7 и 11 классах на уроках русского языка использовала правила определения понятий, дихотомическое деление, классификацию понятий, обобщение и ограничение понятий, показывала нарушения логического закона тождества. На уроках литературы она подробно анализировала приемы, сходные с определением понятий, обращалась к объяснению аналогии, учила находить и формулировать дилеммы, стоящие перед литературными героями.
Таким образом, повышение логической культуры школьников может осуществляться либо посредством систематического преподавания логики в 1-11 классах, либо путем введения ее основ при изучении отдельных предметов. Необходимо совершенствовать эту важнейшую научно-методическую работу по обоим направлениям.
- Введение
- Глава I предмет и значение логики
- § 1. Формы познания Формы чувственного познания
- Формы абстрактного мышления
- Растения делятся или на однолетние или на многолетние.
- Особенности абстрактного мышления
- § 2. Понятие логической формы и логического закона
- Понятие логической формы
- Логические законы
- Истинность мысли и формальная правильность рассуждений
- Все металлы - твердые тела.
- Все небесные тела – планеты
- Все тигры полосатые.
- 4. Все ушастые тюлени – ластоногие.
- Теоретическое и практическое значение логики
- § 3. Логика и язык
- Семантические категории
- Задачи к теме “Предмет и значение логики”
- Глава II понятие
- § 1. Понятие как форма мышления
- Содержание и объем понятия
- Закон обратного отношения между объемами и содержаниями понятий
- § 2. Отношения между понятиями
- Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- Типы несовместимости: соподчинение, противоположность, противоречие
- § 3. Определение понятий
- Правила явного определения. Ошибки, возможные в определении
- Неявные определения
- Определение через аксиомы
- Использование определений понятий в процессе обучения
- Приемы, сходные с определением понятий
- § 4. Деление понятий. Классификация
- Правила деления понятий
- Виды деления: по видообразующему признаку и дихотомическое деление
- Классификация
- Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- § 5. Ограничение и обобщение понятий
- II. Определить отношения между следующими понятиями:
- Глава III суждение
- § 1. Общая характеристика суждения
- Суждение и предложение
- § 2. Простое суждение
- Виды простых ассерторических суждений
- 1. Суждения свойства (атрибутивные).
- 2. Суждения с отношениями.
- Категорические суждения и их виды (деление по количеству и качеству)
- Объединенная классификация простых категорических суждений по количеству и качеству
- Распределенность терминов в категорических суждениях
- § 3. Сложное суждение и его виды. Исчисление высказываний
- Способы отрицания суждений
- Отрицание сложных суждении
- Исчисление высказываний
- § 4. Выражение логических связок (логических постоянных) в естественном языке
- §5.Отношения между суждениями по значениям истинности
- Противоположность (контрарность)
- § Б. Деление суждений по модальности
- Задачи к теме “Суждение”
- VII. Являются ли суждениями следующие предложения?
- Глава IV законы (принципы) правильного мышления
- § 1. Понятие логического закона
- § 2. Законы логики и их роль в познании Закон тождества
- Закон непротиворечия
- Закон исключенного третьего
- Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- Закон достаточного основания
- § 3. Использование формально-логических законов в процессе обучения
- Задачи к теме “Законы (принципы) правильного мышления”
- Глава V умозаключение
- § 1. Общее понятие об умозаключении
- Понятие логического следования
- § 2. Дедуктивные умозаключения
- Понятие правила вывода
- § 3. Выводы из категорических суждений посредством их преобразования
- S есть р
- § 4. Простой категорический силлогизм1
- Фигуры и модусы категорического силлогизма
- Особые правила фигур
- Модусы категорического силлогизма.
- Правила категорического силлогизма
- /. Правила терминов
- //. Правила посылок
- § 5. Сокращенный категорический силлогизм (энтимема)
- § 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- Все с суть d. Сорит (с общими посылками)
- Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- § 7. Условные умозаключения
- I. Утверждающий модус (modus ponens).
- II. Отрицающий модус (modus tollens).
- Первый вероятностный модус
- Структура его: Cхема:
- Второй вероятностный модус
- § 8. Разделительные умозаключения
- § 9. Условно-разделительные (лемматические) умозаключения
- Дилемма1
- Cхема Формула:
- Трилемма
- § 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- 1. В умозаключении пропущено заключение
- 2. В умозаключении пропущена одна из посылок
- 1. Простая контрапозиция.
- 2. Сложная контрапозиция.
- § 11. Непрямые (косвенные) выводы
- 1. Рассуждение по правилу введения импликации
- 2. Правило сведения “к абсурду”
- 3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- § 12. Индуктивные умозаключения и их виды Логическая природа индукции
- Математическая индукция
- Виды неполной индукции
- 2. Индукция через анализ и отбор фактов
- Понятие вероятности
- 3. Научная индукция
- § 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- Методы установления причинной связи
- Метод сходства
- Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- § 14. Дедукция и индукция в учебном процессе
- Задачи к теме “Умозаключение”
- 3. Во всех городах за полярным кругом бывают белые ночи.
- Все летучие мыши - представители отряда рукокрылых.
- Глава VI логические основы теории аргументации
- § 1. Понятие доказательства
- Структура доказательства: тезис, аргументы, демонстрация
- Виды аргументов
- § 2. Прямое и непрямое (косвенное) доказательства
- § 3. Понятие опровержения
- 1. Опровержение тезиса (прямое и косвенное)
- II. Критика аргументов
- III. Выявление несостоятельности демонстрации
- § 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- Правила по отношению к тезису
- Ошибки относительно доказываемого тезиса
- Правила по отношению к аргументам
- Правило по отношению формы обоснования тезиса (демонстрации)
- Ошибки в форме доказательства
- 3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- § 5. Понятие о софизмах и логических парадоксах
- Понятие о логических парадоксах
- Парадоксы теории множеств
- § 6. Искусство ведения дискуссии
- Задачи к теме
- 1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- 1Цит. По: Русская литература. Л., 1980. С. 55.
- 2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- 3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- Глава VII аналогия и гипотеза. Их роль в учебном процессе
- § 1. Умозаключение по аналогии и его виды
- Строгая аналогия
- Нестрогая аналогия
- Ложная аналогия
- § 2. Гипотеза и ее виды
- Виды гипотез
- § 3. Построение гипотез
- Способы подтверждения гипотез бывают такие:
- Примеры гипотез, применяющихся на уроках в школе
- Глава VIII роль логики в процессе обучения
- § 1. Логическая структура вопроса
- Виды вопросов
- Предпосылки вопросов
- Правила постановки простых и сложных вопросов
- Логическая структура и виды ответов
- § 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- § 3. Развитие логического мышления младших школьников
- Обобщение:
- Ограничение:
- § 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- Развитие логического мышления на уроках математики
- Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- § 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- Формы активизации мыслительной деятельности , студентов в учебном процессе
- Семинары и самостоятельные работы студентов
- РРис.23
- Все лисицы - позвоночные.
- 2.Все птицы имеют оперение.
- Контрольные работы
- Вопросы экзаменационных билетов
- Кроссворд по теме “Понятие”
- Ответы на кроссворд
- Формы внеаудиторной работы со студентами
- § 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- Кроссворд, составленный ученицей 11 класса Татьяной и.'
- Ответы на кроссворд
- По горизонтали:
- Ответы на кроссворд
- Тест айзенка (стр. 342-358)
- § 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- II. Требования к оформлению работы
- 1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- 1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика
- Заключение
- 1. Предмет и значение логики.
- 2. Понятие.
- 3. Суждение.
- 4. Умозаключение.
- 5. Логические основы теории аргументации.
- Вопрос 260-265
- Еебулид 383
- ИвинА.А.97,43”
- ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- Сократ 380,381
- Свинцов в. И. Логика. М., 1987.
- II. Популярная литература
- III. Литература по педагогическим приложениям логики