§ 12. Индуктивные умозаключения и их виды Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истинных посылок при соблюдении соответствующих правил истинные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдоподобные заключения.
В определении индукции в логике выявляются два подхода -первый, осуществляемый в традиционной (не в математической) логике, в которой индукцией называется умозаключение от знания меньшей степени общности к новому знанию большей степени общности (т. е. от отдельных частных случаев мы переходим к общему суждению). При втором подходе, присущем современной математической логике, индукцией называется умозаключение, дающее вероятностное суждение.
Общее в природе и обществе не существует самостоятельно, до и вне отдельного, а отдельное не существует без общего; общее существует в отдельном, через отдельное, т. е. проявляется в конкретных предметах. Поэтому общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют индукцию полную и неполную. По другому основанию выделяют математическую индукцию.
Полной индукцией называется такое умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса. В полной индукции изучаются все предметы данного класса, а посылками служат единичные суждения. Например:
Земля вращается вокруг Солнца по эллиптической орбите.
Марс вращается вокруг Солнца по эллиптической орбите.
Юпитер вращается вокруг Солнца по эллиптической орбите.
Сатурн вращается вокруг Солнца по эллиптической орбите.
Плутон вращается вокруг Солнца по эллиптической орбите.
Венера вращается вокруг Солнца по эллиптической орбите.
Уран вращается вокруг Солнца по эллиптической орбите.
Нептун вращается вокруг Солнца по эллиптической орбите.
Меркурий вращается вокруг Солнца по эллиптической орбите.
Земля, Марс, Юпитер, Сатурн, Плутон, Венера, Уран, Нептун, Меркурий -планеты Солнечной системы.
Все планеты Солнечной системы вращаются вокруг Солнца по эллиптической орбите.
182
Посылками в полной индукции могут быть и общие суждения. Например:
Все моржи - водные млекопитающие.
Все ушастые тюлени - водные млекопитающие.
Все настоящие тюлени - водные млекопитающие.
Моржи, ушастые тюлени, настоящие тюлени представляют семейство ластоногих.
Все ластоногие - водные млекопитающие.
Полная индукция дает достоверное заключение, поэтому она часто применяется в математических и в других самых строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:
1. Точно знать число предметов или явлений, подлежащих рассмотрению.
2. Убедиться, что признак принадлежит каждому элементу этого класса.
3. Число элементов изучаемого класса должно быть невелико.
- Введение
- Глава I предмет и значение логики
- § 1. Формы познания Формы чувственного познания
- Формы абстрактного мышления
- Растения делятся или на однолетние или на многолетние.
- Особенности абстрактного мышления
- § 2. Понятие логической формы и логического закона
- Понятие логической формы
- Логические законы
- Истинность мысли и формальная правильность рассуждений
- Все металлы - твердые тела.
- Все небесные тела – планеты
- Все тигры полосатые.
- 4. Все ушастые тюлени – ластоногие.
- Теоретическое и практическое значение логики
- § 3. Логика и язык
- Семантические категории
- Задачи к теме “Предмет и значение логики”
- Глава II понятие
- § 1. Понятие как форма мышления
- Содержание и объем понятия
- Закон обратного отношения между объемами и содержаниями понятий
- § 2. Отношения между понятиями
- Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- Типы несовместимости: соподчинение, противоположность, противоречие
- § 3. Определение понятий
- Правила явного определения. Ошибки, возможные в определении
- Неявные определения
- Определение через аксиомы
- Использование определений понятий в процессе обучения
- Приемы, сходные с определением понятий
- § 4. Деление понятий. Классификация
- Правила деления понятий
- Виды деления: по видообразующему признаку и дихотомическое деление
- Классификация
- Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- § 5. Ограничение и обобщение понятий
- II. Определить отношения между следующими понятиями:
- Глава III суждение
- § 1. Общая характеристика суждения
- Суждение и предложение
- § 2. Простое суждение
- Виды простых ассерторических суждений
- 1. Суждения свойства (атрибутивные).
- 2. Суждения с отношениями.
- Категорические суждения и их виды (деление по количеству и качеству)
- Объединенная классификация простых категорических суждений по количеству и качеству
- Распределенность терминов в категорических суждениях
- § 3. Сложное суждение и его виды. Исчисление высказываний
- Способы отрицания суждений
- Отрицание сложных суждении
- Исчисление высказываний
- § 4. Выражение логических связок (логических постоянных) в естественном языке
- §5.Отношения между суждениями по значениям истинности
- Противоположность (контрарность)
- § Б. Деление суждений по модальности
- Задачи к теме “Суждение”
- VII. Являются ли суждениями следующие предложения?
- Глава IV законы (принципы) правильного мышления
- § 1. Понятие логического закона
- § 2. Законы логики и их роль в познании Закон тождества
- Закон непротиворечия
- Закон исключенного третьего
- Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- Закон достаточного основания
- § 3. Использование формально-логических законов в процессе обучения
- Задачи к теме “Законы (принципы) правильного мышления”
- Глава V умозаключение
- § 1. Общее понятие об умозаключении
- Понятие логического следования
- § 2. Дедуктивные умозаключения
- Понятие правила вывода
- § 3. Выводы из категорических суждений посредством их преобразования
- S есть р
- § 4. Простой категорический силлогизм1
- Фигуры и модусы категорического силлогизма
- Особые правила фигур
- Модусы категорического силлогизма.
- Правила категорического силлогизма
- /. Правила терминов
- //. Правила посылок
- § 5. Сокращенный категорический силлогизм (энтимема)
- § 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- Все с суть d. Сорит (с общими посылками)
- Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- § 7. Условные умозаключения
- I. Утверждающий модус (modus ponens).
- II. Отрицающий модус (modus tollens).
- Первый вероятностный модус
- Структура его: Cхема:
- Второй вероятностный модус
- § 8. Разделительные умозаключения
- § 9. Условно-разделительные (лемматические) умозаключения
- Дилемма1
- Cхема Формула:
- Трилемма
- § 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- 1. В умозаключении пропущено заключение
- 2. В умозаключении пропущена одна из посылок
- 1. Простая контрапозиция.
- 2. Сложная контрапозиция.
- § 11. Непрямые (косвенные) выводы
- 1. Рассуждение по правилу введения импликации
- 2. Правило сведения “к абсурду”
- 3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- § 12. Индуктивные умозаключения и их виды Логическая природа индукции
- Математическая индукция
- Виды неполной индукции
- 2. Индукция через анализ и отбор фактов
- Понятие вероятности
- 3. Научная индукция
- § 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- Методы установления причинной связи
- Метод сходства
- Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- § 14. Дедукция и индукция в учебном процессе
- Задачи к теме “Умозаключение”
- 3. Во всех городах за полярным кругом бывают белые ночи.
- Все летучие мыши - представители отряда рукокрылых.
- Глава VI логические основы теории аргументации
- § 1. Понятие доказательства
- Структура доказательства: тезис, аргументы, демонстрация
- Виды аргументов
- § 2. Прямое и непрямое (косвенное) доказательства
- § 3. Понятие опровержения
- 1. Опровержение тезиса (прямое и косвенное)
- II. Критика аргументов
- III. Выявление несостоятельности демонстрации
- § 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- Правила по отношению к тезису
- Ошибки относительно доказываемого тезиса
- Правила по отношению к аргументам
- Правило по отношению формы обоснования тезиса (демонстрации)
- Ошибки в форме доказательства
- 3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- § 5. Понятие о софизмах и логических парадоксах
- Понятие о логических парадоксах
- Парадоксы теории множеств
- § 6. Искусство ведения дискуссии
- Задачи к теме
- 1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- 1Цит. По: Русская литература. Л., 1980. С. 55.
- 2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- 3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- Глава VII аналогия и гипотеза. Их роль в учебном процессе
- § 1. Умозаключение по аналогии и его виды
- Строгая аналогия
- Нестрогая аналогия
- Ложная аналогия
- § 2. Гипотеза и ее виды
- Виды гипотез
- § 3. Построение гипотез
- Способы подтверждения гипотез бывают такие:
- Примеры гипотез, применяющихся на уроках в школе
- Глава VIII роль логики в процессе обучения
- § 1. Логическая структура вопроса
- Виды вопросов
- Предпосылки вопросов
- Правила постановки простых и сложных вопросов
- Логическая структура и виды ответов
- § 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- § 3. Развитие логического мышления младших школьников
- Обобщение:
- Ограничение:
- § 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- Развитие логического мышления на уроках математики
- Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- § 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- Формы активизации мыслительной деятельности , студентов в учебном процессе
- Семинары и самостоятельные работы студентов
- РРис.23
- Все лисицы - позвоночные.
- 2.Все птицы имеют оперение.
- Контрольные работы
- Вопросы экзаменационных билетов
- Кроссворд по теме “Понятие”
- Ответы на кроссворд
- Формы внеаудиторной работы со студентами
- § 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- Кроссворд, составленный ученицей 11 класса Татьяной и.'
- Ответы на кроссворд
- По горизонтали:
- Ответы на кроссворд
- Тест айзенка (стр. 342-358)
- § 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- II. Требования к оформлению работы
- 1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- 1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика
- Заключение
- 1. Предмет и значение логики.
- 2. Понятие.
- 3. Суждение.
- 4. Умозаключение.
- 5. Логические основы теории аргументации.
- Вопрос 260-265
- Еебулид 383
- ИвинА.А.97,43”
- ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- Сократ 380,381
- Свинцов в. И. Логика. М., 1987.
- II. Популярная литература
- III. Литература по педагогическим приложениям логики