Закон непротиворечия
Если предмет А обладает определенным свойством, то в суждениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое или утверждает нечто несовместимое с первым, налицо логическое противоречие. Формально-логические противоречия - это противоречия путаного, неправильного рассуждения. Такие противоречия затрудняют познание мира.
Древнегреческий философ и ученый Аристотель считал “самым достоверным из всех начал” следующее: “...Невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении”'. Эта формулировка указывает на необходимость для человека не допускать в своем мышлении и речи формально-противоречивые высказывания, в противном случае его мышление будет неправильным.
Мысль противоречива, если мы об одном и том же предмете в одно и то же время и в одном и том же отношении нечто утверждаем и то же самое отрицаем. Например: “Кама - приток Волги” и “Кама не является притоком Волги”. Или: “Лев Толстой - автор романа “Воскресение” и “Лев Толстой не является автором романа “Воскресение”.
Противоречия не будет, если мы говорим о разных предметах или об одном и том же предмете, взятом в разное время или в разном отношении. Противоречия не будет, если мы скажем:
“Осенью дождь полезен для грибов” и “Осенью дождь не полезен для уборки урожая”. Суждения “Этот букет роз свежий” и “Этот букет роз не является свежим” также не противоречат друг другу, ибо предметы мысли в этих суждениях берутся в разных отношениях или в разное время. Суждения “Саша Голубев не является перворазрядником по бегу” и “Саша Голубев является перворазрядником по бегу” не будут противоречащими, если они не относятся к одному и тому же времени.
Не могут быть одновременно истинными следующие четыре типа простых суждений:
______________________________
1Аристотель. Метафизика // Соч.: в 4-х т. М., 1976. Т. 1. С. 125.
110
1. “Данное S есть Р” и “Данное S не есть Р”.
2. “Ни одно S не есть Р” и “Все S есть Р”.
3. “Все S есть Р” и “Некоторые S не есть Р”.
4. “Ни одно S не есть Р” и “Некоторые S есть Р”.
При этом вторая пара суждений такова, что оба суждения могут быть ложными, например: “Ни один студент не является спортсменом” и “Все студенты являются спортсменами”.
Чаще всего встречается определение формально-логического противоречия как конъюнкции суждения и его отрицания (а и не а). Но логическое противоречие может быть выражено и без отрицания: оно имеет место между несовместимыми и утвердительными суждениями1.
Закон непротиворечия не действует в логике “размытых” (fuzzy) множеств, ибо в ней к “размытым” множествам и “размытым” алгоритмам можно одновременно применять утверждение и отрицание (например: “Этот мужчина пожилой” и “Этот мужчина еще не является пожилым”, ибо понятие “пожилой мужчина” является “нечетким” понятием, не имеющим четко очерченного объема).
Приведенные примеры свидетельствуют о том, что формальнологическое противоречие возникает тогда, когда пытаются считать истинными два или несколько утвердительных суждений, не совместимых между собой. Не менее распространенной в мышлении является форма логического противоречия, когда одновременно утверждается и отрицается одно и то же суждение, т. е. допускается конъюнкция а и не-а. Таким образом, в традиционной формальной логике противоречием считается утверждение двух противоположных (как контрарных, так и контрадикторных) суждений об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении. В исчислении высказываний классической двузначной логики закон непротиворечия записывается следующей формулой:
____
a ^ â
__________________________
1Следует различать два аспекта: отношение противоречия между высказываниями (или суждениями) и противоречие как синоним тождественно-ложной формулы (см. главу III, § 3. “Сложные суждения...”). Если два суждения (а и b) или несколько суждений не могут быть истинными одновременно, то эти суждения называются несовместимыми, или противоречащими.
111
Закон непротиворечия читается так: “Два противоположных суждения не могут быть истинными в одно и то же время и в одном и том отношении”. К противоположным суждениям относятся: 1) противные (контрарные) суждения А и Е, которые оба могут быть ложными, поэтому не являются отрицающими друг друга, и их нельзя обозначить как а и â ; 2) противоречащие [контрадикторные) суждения А и О, Е и I, а также единичные суждения “Это S есть Р” и “Это S не есть Р”, которые являются отрицающими, так как если одно из них истинно, то другое обязательно ложно, поэтому их обозначают а и â.
Формула закона непротиворечия в двузначной классической логике a ^ â отражает лишь часть содержательного аристотелевского закона непротиворечия, так как она относится только к противоречащим суждениям (а и не-а) и не распространяется на противные (контрарные суждения). Поэтому формула а^â неадекватно, нe полностью представляет содержательный закон непротиворечия. Следуя традиции, мы за формулой a ^ â сохраняем название “закон непротиворечия”, хотя оно значительно шире, чем данная формула.
Если в мышлении (и речи) человека обнаружено формально-логическое противоречие, то такое мышление считается неправильным, а суждение, из которого вытекает противоречие, отрицается и считается ложным. Поэтому в полемике при опровержении мнения оппонента широко используется метод “приведения к абсурду”.
Диалектические противоречия процесса познания выражаются в форме (структуре) формально-логических противоречий, напримep: опровержение гипотезы путем опровержения (фальсификации) следствий, противоречащих опытным фактам или ранее известным законам; выступления докладчика и оппонента, обвинителя и защитника; взгляды людей, придерживающихся конкурируюших гипотез; мышление врача (или врачей при консилиуме), получившего клинические анализы, несовместимые с ранee поставленным диагнозом болезни. Во всех этих и подобных (м ситуациях фиксируется несовместимость суждения а и не-а, например, несовместимость какого-либо суждения а из прежней
112
теории и суждения не-а, выражающего мысль о новом полученном опытном факте, т. е. фиксируется мысль, что суждения а и не-а не могут быть оба истинными, и поэтому их конъюнкция ложна. Отсюда (по законам классической двузначной логики) делается вывод, что требуется дальнейшее исследование, анализ.
Итак, первичным (содержанием) выступает диалектическое противоречие, объективно возникающее в процессе познания, и именно оно служит движущей силой познания, а вторичным является способ фиксации (способ выражения) диалектического противоречия в виде конъюнкции двух суждений а и не-а, т. е. в форме формально-логического противоречия.
Здесь налицо ситуация, по своему типу аналогичная случаю “антиномии-проблемы”, когда возникшее диалектическое противоречие в познании до момента его разрешения выражается в форме “а и не-а”, т. е. принимает как бы облик, оболочку, внешнюю форму формально-логического противоречия, а по существу остается диалектическим противоречием, требующим своего разрешения в ходе исследования возникшей проблемы. В результате диалектического синтеза тезиса и антитезиса получается новое знание, отличающееся как от тезиса, так и от антитезиса, а также не являющееся их конъюнкцией. Итак, в мышлении диалектическое противоречие до его разрешения принимает форму (структуру) формально-логического противоречия, а обнаружение последнего свидетельствует или “сигнализирует” о том, что необходим дальнейший анализ и исследование возникшей в познании ситуации. Разрешение обнаруженного диалектического противоречия способствует продвижению познания. Одним из примеров антиномий1 является формулировка познавательной задачи в первом томе “Капитала” К. Маркса, где он пишет: “...Капитал не может возникнуть из обращения и так же не может возникнуть вне обращения. Он должен возникнуть в обращении и в то же время не в обращении”2.
___________________________
1Впервые антиномии мышления достаточно четко изложил И. Кант.
2Маркс К. и Энгельс Ф. Соч. 2-е над. Т. 23. С. 176.
113
- Введение
- Глава I предмет и значение логики
- § 1. Формы познания Формы чувственного познания
- Формы абстрактного мышления
- Растения делятся или на однолетние или на многолетние.
- Особенности абстрактного мышления
- § 2. Понятие логической формы и логического закона
- Понятие логической формы
- Логические законы
- Истинность мысли и формальная правильность рассуждений
- Все металлы - твердые тела.
- Все небесные тела – планеты
- Все тигры полосатые.
- 4. Все ушастые тюлени – ластоногие.
- Теоретическое и практическое значение логики
- § 3. Логика и язык
- Семантические категории
- Задачи к теме “Предмет и значение логики”
- Глава II понятие
- § 1. Понятие как форма мышления
- Содержание и объем понятия
- Закон обратного отношения между объемами и содержаниями понятий
- § 2. Отношения между понятиями
- Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- Типы несовместимости: соподчинение, противоположность, противоречие
- § 3. Определение понятий
- Правила явного определения. Ошибки, возможные в определении
- Неявные определения
- Определение через аксиомы
- Использование определений понятий в процессе обучения
- Приемы, сходные с определением понятий
- § 4. Деление понятий. Классификация
- Правила деления понятий
- Виды деления: по видообразующему признаку и дихотомическое деление
- Классификация
- Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- § 5. Ограничение и обобщение понятий
- II. Определить отношения между следующими понятиями:
- Глава III суждение
- § 1. Общая характеристика суждения
- Суждение и предложение
- § 2. Простое суждение
- Виды простых ассерторических суждений
- 1. Суждения свойства (атрибутивные).
- 2. Суждения с отношениями.
- Категорические суждения и их виды (деление по количеству и качеству)
- Объединенная классификация простых категорических суждений по количеству и качеству
- Распределенность терминов в категорических суждениях
- § 3. Сложное суждение и его виды. Исчисление высказываний
- Способы отрицания суждений
- Отрицание сложных суждении
- Исчисление высказываний
- § 4. Выражение логических связок (логических постоянных) в естественном языке
- §5.Отношения между суждениями по значениям истинности
- Противоположность (контрарность)
- § Б. Деление суждений по модальности
- Задачи к теме “Суждение”
- VII. Являются ли суждениями следующие предложения?
- Глава IV законы (принципы) правильного мышления
- § 1. Понятие логического закона
- § 2. Законы логики и их роль в познании Закон тождества
- Закон непротиворечия
- Закон исключенного третьего
- Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- Закон достаточного основания
- § 3. Использование формально-логических законов в процессе обучения
- Задачи к теме “Законы (принципы) правильного мышления”
- Глава V умозаключение
- § 1. Общее понятие об умозаключении
- Понятие логического следования
- § 2. Дедуктивные умозаключения
- Понятие правила вывода
- § 3. Выводы из категорических суждений посредством их преобразования
- S есть р
- § 4. Простой категорический силлогизм1
- Фигуры и модусы категорического силлогизма
- Особые правила фигур
- Модусы категорического силлогизма.
- Правила категорического силлогизма
- /. Правила терминов
- //. Правила посылок
- § 5. Сокращенный категорический силлогизм (энтимема)
- § 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- Все с суть d. Сорит (с общими посылками)
- Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- § 7. Условные умозаключения
- I. Утверждающий модус (modus ponens).
- II. Отрицающий модус (modus tollens).
- Первый вероятностный модус
- Структура его: Cхема:
- Второй вероятностный модус
- § 8. Разделительные умозаключения
- § 9. Условно-разделительные (лемматические) умозаключения
- Дилемма1
- Cхема Формула:
- Трилемма
- § 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- 1. В умозаключении пропущено заключение
- 2. В умозаключении пропущена одна из посылок
- 1. Простая контрапозиция.
- 2. Сложная контрапозиция.
- § 11. Непрямые (косвенные) выводы
- 1. Рассуждение по правилу введения импликации
- 2. Правило сведения “к абсурду”
- 3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- § 12. Индуктивные умозаключения и их виды Логическая природа индукции
- Математическая индукция
- Виды неполной индукции
- 2. Индукция через анализ и отбор фактов
- Понятие вероятности
- 3. Научная индукция
- § 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- Методы установления причинной связи
- Метод сходства
- Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- § 14. Дедукция и индукция в учебном процессе
- Задачи к теме “Умозаключение”
- 3. Во всех городах за полярным кругом бывают белые ночи.
- Все летучие мыши - представители отряда рукокрылых.
- Глава VI логические основы теории аргументации
- § 1. Понятие доказательства
- Структура доказательства: тезис, аргументы, демонстрация
- Виды аргументов
- § 2. Прямое и непрямое (косвенное) доказательства
- § 3. Понятие опровержения
- 1. Опровержение тезиса (прямое и косвенное)
- II. Критика аргументов
- III. Выявление несостоятельности демонстрации
- § 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- Правила по отношению к тезису
- Ошибки относительно доказываемого тезиса
- Правила по отношению к аргументам
- Правило по отношению формы обоснования тезиса (демонстрации)
- Ошибки в форме доказательства
- 3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- § 5. Понятие о софизмах и логических парадоксах
- Понятие о логических парадоксах
- Парадоксы теории множеств
- § 6. Искусство ведения дискуссии
- Задачи к теме
- 1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- 1Цит. По: Русская литература. Л., 1980. С. 55.
- 2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- 3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- Глава VII аналогия и гипотеза. Их роль в учебном процессе
- § 1. Умозаключение по аналогии и его виды
- Строгая аналогия
- Нестрогая аналогия
- Ложная аналогия
- § 2. Гипотеза и ее виды
- Виды гипотез
- § 3. Построение гипотез
- Способы подтверждения гипотез бывают такие:
- Примеры гипотез, применяющихся на уроках в школе
- Глава VIII роль логики в процессе обучения
- § 1. Логическая структура вопроса
- Виды вопросов
- Предпосылки вопросов
- Правила постановки простых и сложных вопросов
- Логическая структура и виды ответов
- § 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- § 3. Развитие логического мышления младших школьников
- Обобщение:
- Ограничение:
- § 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- Развитие логического мышления на уроках математики
- Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- § 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- Формы активизации мыслительной деятельности , студентов в учебном процессе
- Семинары и самостоятельные работы студентов
- РРис.23
- Все лисицы - позвоночные.
- 2.Все птицы имеют оперение.
- Контрольные работы
- Вопросы экзаменационных билетов
- Кроссворд по теме “Понятие”
- Ответы на кроссворд
- Формы внеаудиторной работы со студентами
- § 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- Кроссворд, составленный ученицей 11 класса Татьяной и.'
- Ответы на кроссворд
- По горизонтали:
- Ответы на кроссворд
- Тест айзенка (стр. 342-358)
- § 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- II. Требования к оформлению работы
- 1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- 1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- Глава X этапы развития логики как науки
- § 1. Краткие сведения из истории классической и неклассических логик
- Логика в Древней Индии
- Логика Древнего Китая
- Логика в Древней Греции
- Логика в средние века
- Логика эпохи Возрождения и Нового времени'
- Логика в России
- Математическая логика
- § 2. Развитие логики в связи с проблемой обоснования математики
- § 3. Интуиционистская логика
- § 4. Конструктивные логики
- Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- Конструктивная логика а. А. Маркова
- § 5. Многозначные логики
- Трехзначная система Лукасевнча
- Отрицание Лукасевича
- Трехзначная система Гейтинга
- Импликация Гейтинга
- Две бесконечнозначные системы Гетмановой:
- § 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- § 7. Модальные логики
- § 8. Положительные логики
- § 9. Паранепротиворечивая логика
- Заключение
- 1. Предмет и значение логики.
- 2. Понятие.
- 3. Суждение.
- 4. Умозаключение.
- 5. Логические основы теории аргументации.
- Вопрос 260-265
- Еебулид 383
- ИвинА.А.97,43”
- ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- Сократ 380,381
- Свинцов в. И. Логика. М., 1987.
- II. Популярная литература
- III. Литература по педагогическим приложениям логики