9. Определение степени с действительным показателем и её свойства
Степень с действительным показателем окончательно вводится в 10 кл. При ответе на вопрос: «Что такое степень с действительным показателем?», нужно говорить: «определение степени с действительным показателем состоит из нескольких определений, перечислим их: Опр. 1 – Опр. 8».
Опр 1. Степенью числа а с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен а.
an= a∙a∙… ∙a,
Опр. 2. Степенью числа а с показателем 1 называется само число а. а1 = а
Опр. 3. Если , то:
Опр. 4. Если , то
Опр 5. Арифметическим корнем натуральной степени из неотрицательного числа а называется неотрицательное число, n-ая степень которого равна а.
.
Опр. 6. Корень нечётной степени из отрицательного числа:
.
Опр. 7.
Подробнее поговорим, как вводится степень с иррациональным показателем. Вспоминаем, что кроме рациональных чисел нам известны иррациональные число: , 0,123… - бесконечная непериодическая десятичная дробь.
Поэтому необходимо ввести понятие степени с иррациональным показателем. Рассмотрим, как можно определить .
Десятичным приближением числа по недостатку являются числа:
Т.е. имеет место последовательность . Эта последовательность монотонно возрастает и ограничена, например, отрезком [1, 2]. Тогда (по теореме Вейерштрасса) существует . Числа - рациональные, поэтому для них определены степени Имеем последовательность . В курсе высшей математики доказывается, что эта последовательность имеет предел и естественно его считать равным .
.
Т.е. можно определить степень с любым иррациональным показателем.
Вообще, пусть a > 0 и α – произвольное иррациональное число. Рассмотрим последовательность десятичных приближений числа α. Эта последовательность имеет предел . Можно показать, что последовательность также имеет предел. Этот предел обозначают и называют степенью число а с показателем α.
, a > 0
Опр. 8. , , .
Свойства степени с иррациональным показателем ( ):
10.
20.
30.
40.
50.
Переходим к изучению свойств степени с действительным показателем.
Свойства 10 и 20 не доказываются в рамках школьного курса математики. Свойство 10 достаточно очевидно, а свойство 20 можно открыть рассматривая различные примеры. Отметим, что для степени с действительным показателем сохраняются все известные ранее свойства. Другие свойства доказываются.
Следует подчеркнуть, что рассматриваемые свойства выполняются для степени с любым действительным показателем, а значит, с натуральным, целым, рациональным. Эти свойства будут составлять базу для выявления свойств степенной и показательной функции, для решения степенных и показательных уравнений и неравенств.
Свойства степени с действительным показателем (a>0, a1>0, a2>0, ):
10.
20. ;
30.
40.
50.
60.
70.
- 1. Цели и задачи изучения курса алгебры, алгебры и начал анализа в 9-11 классах
- 2. Понятие функции в мат-ке и в школьном курсе мат-ки. Формирование понятия функции в школьном курсе мат-ки
- 3. Знания и умения школьников, связанные с понятием функции. Методика введения понятия функции
- 4. Методика изучения линейной функции
- 5. Методика изучения квадратичной функции
- 6. Методика изучения общих свойств функции
- 7. Расширение понятия степени. Методика введения понятия степени с целым показателем
- 8. Методика введения арифметического корня с натуральным показателем, степени с рациональным показателем
- 9. Определение степени с действительным показателем и её свойства
- 10. Теоретические основы изучения степенной функции
- 11.Урок обобщения и систематизации по теме «Степенная ф-ция»
- 12.Проект изучения темы «Арифметическая и геометрическая прогрессии» (9 класс). Урок решения ключевых задач (метод уде)
- Глава 4, §§14-16.
- Глава 4, §§14-16.
- Ход урока
- 12. Теор. Основы изучения темы «Арифметическая и геометрическая прогрессии»
- 13. Методика изучения показательной функции
- 14. Теоретические основы изучения логарифмической функции. Методика введения понятия логарифма
- 1. Мотивационно-ориентировочный этап
- 2. Содержательный этап.
- 15. Разработка урока-лекции «Логарифмическая функция, её свойства и график»
- I. Мотивационно-ориентировочная часть.
- II.Содержательная часть.
- 16. Методические основы введения и изучения элементов тригонометрии: числовая окружность, числовая окружность на координатной плоскости
- 17. Методические основы введения и изучения элементов тригонометрии: определение синуса, косинуса, тангенса и котангенса числа (угла)
- 17. Методические основы введения и изучения элементов тригонометрии: определение синуса, косинуса, тангенса и котангенса числа (угла)
- 18. Теоретические основы изучения темы «Тождественные преобразования тригонометрических выражений». Урок решения ключевых задач
- 19. Методические рекомендации к изучению тригонометрических функций. Методика изучения свойства периодичности функции
- 21. Проект урока-лекции «Решение уравнений и неравенств Арксинус числа. Свойства арксинуса числа»
- 22. Проект урока-лекции «Решение уравнений и неравенств Арккосинус числа. Свойства арккосинуса числа»
- 23. Проект урока-лекции «Решение уравнений и неравенств Арктангенс числа. Свойства арктангенса числа»
- 24. Методика обучения решению триг. Уравнений и неравенств. Основные приёмы решения триг. Уравнений
- Семинар-практикум по теме: «Основные приёмы решений тригонометрических уравнений».
- 25. Логические основы решения уравнений и неравенств в старших классах. Методические рекомендации к изучению понятий равносильные уравнения, уравнения – следствия, теорем о равносильности уравнений
- 26. Методика обучения учащихся решению частных видов уравнений и неравенств. Построение урока решения задач (на примере темы «Логарифмические уравнения и неравенства»)
- 2.Операционно-познавательный этап.
- 1. Решите уравнение:
- 2) Решите уравнение: .
- 3) Решите уравнение:
- 4) Решите уравнение: .
- 6) Решить неравенство: .
- 3.Рефлексивно-оценочный этап.
- 27. Организация заключительного повторения в 11 классе темы «Уравнения и неравентсва». Урок-лекция «общие методы решения уравнений»
- 1 Группа.
- 2 Группа.
- 3 Группа.
- 28. Методика введения понятий предела функций в точке и непрерывности функции
- 29. Методика введения понятия производной функции
- 30. Методика изучения геометрического смысла производной, уравнения касательной к графику функции
- 31. Теоретические и методические основы изучения темы «Применение производной к исследованию функции»
- 32. Теоретические и методические основы изучения первообразной и интеграла
- 33. Причины включения в школьный курс математики элементов вероятностно-статистической линии. Основные цели изучения элементов теории вероятностей и математической статистики
- 34. Теоретические и методические основы изучения теории вероятностей в школьном курсе математики 9-11 классов