11.Урок обобщения и систематизации по теме «Степенная ф-ция»
Тема урока: «Степенная функция, её свойства и график».Тип урока: урок обобщения и систематизации.Учебная задача: посредством использования различных форм работы на уроке обобщить и систематизировать материал по теме.Диагностируемые цели: в результате урока ученик:
Знает Определение функции; Что такое область определения функции; Определение графика функции; Что такое множество значений функции; Определение возрастающей/ убывающей функции; Определение четной/нечетной функции; Определение степенной функции; Общие свойства степенной функции; Свойства частных видов степенной функции; Вид графика зависит от показателя p; Определение обратимой функции; Свойства взаимно обратных функций; График обратной функции симметричен относительно прямой .
Умеет: Строить график степенной функции в зависимости от показателя степени; Доказывать свойства степенной функции; Находить обратную функцию к данной; Находить точки пересечения функций; Решать уравнения и неравенства графически; Определять свойства функции (убывание, возрастание); Исследовать функцию на монотонность, на четность и на нечетность; Строить график обратной функции на основе четности, нечётности;
Понимает: От чего зависит вид графика и свойства степенной функции; На основе каких теоретических положений доказываются свойства степенной функции; Какая функция обратимая;
Методы обучения: репродуктивный, метод УДЕ, частично – поисковые. Форма работы: фронтальная, групповая
Средства обучения: мел, доска, учебник, компьютер, проектор, канва – таблица.
Структура урока:1)Мотивационно – ориентировочный этап (10 минут); 2)Содержательный этап (33 минут); 3)Рефлексивно – оценочный этап (2 минут) Для данного урока необходимо предваряющее домашнее задание: Постройте графики функций и выясните их свойства:
-
I вариант
II вариант
III вариант
IV вариант
Мотивационно-ориентировочный этап: Актуализация Найти область определения функции (устно, задания в презентации):
Ребята, скажите, что же называется областью определения функции? (Областью определения функции называют множество всех значений, которое принимает её аргумент)Укажите промежутки возрастания, убывания функции. (ученики работают с теми же рисунками). Ребята, скажите, какая функция называется возрастающей? (Функция называется возрастающей на некотором промежутке, если для любых и , принадлежащих данному промежутку, таких, что , выполняется неравенство ) Ребята, скажите, какая функция называется убывающей? Ф-ция называется убывающей на некотором промежутке, если для любых и , принадлежащих данному промежутку, таких, что , выполняется неравенство ) Мотивация: Ребята, сегодня мы с вами будем повторять и систематизировать материал, изученный на прошлых занятиях, который вам понадобится при выполнении самостоятельной работы на следующем уроке. Учебная задача: Подготовиться к контрольной работе по теме «Степенная функция». Содержательный этап Появляется тема урока: «Степенная функция, её свойства и график».Ребята, сегодня в течении урока будем заполнять канву-таблицу, которая сейчас лежит перед вами. Вас было задано домашнее задание, в котором Вы должны были построить несколько графиков функций и описать их свойства. Сейчас вы по вариантам будете выходить к доске, изображать графики функций и мы вместе со всеми будем обсуждать свойства этих графиков. Для начала мы рассмотрим функции и (два ученика выходит к доске, и изображают графики этих функций, остальные ученики проверяют их построения).
Свойства: Область определения – . Множество значений – . Функция – четная. Функция является убывающей на промежутке и возрастающей на промежутке .
Свойства: Область определения – . Множество значений – . Функция – четная. Функция является убывающей на промежутке и возрастающей на промежутке .
Хорошо, ребята, скажите, к какому классу из представленных принадлежат наши функции и .
I |
|
II |
|
III |
|
IV |
|
V | – положительное действительное нецелое число |
Давайте теперь выявим свойства функций, принадлежащих к классу функций .
Свойства: Область определения –множество . Множество значений – . Функция – четная. Функция является убывающей на промежутке и возрастающей на промежутке .
Все результаты заносятся в канву-таблицу.
Далее мы рассматриваем функции и (два ученика выходит к доске, и изображают графики этих функций, остальные ученики проверяют их построения).
Свойства: Область определения – множество , кроме . Множество значений . Функция – четная. Функция является убывающей на промежутке и возрастающей на промежутке .
Свойства: Область определения – множество , кроме . . Множество значений . Функция – четная. Функция является убывающей на промежутке и возрастающей на промежутке .
Хорошо, ребята, скажите, к какому классу из представленных принадлежат наши функции и
I |
|
II |
|
III |
|
IV |
|
V | – положительное действительное нецелое число |
(к III классу).
Давайте теперь выявим свойства функций, принадлежащих к классу функций
Свойства Область определения – множество , кроме . Множество значений – все положительные числа, то есть . Функция – четная, так как . Функция является убывающей на промежутке и возрастающей на промежутке .
Далее мы рассматриваем функции и (два ученика выходит к доске, и изображают графики этих функций, остальные ученики проверяют их построения)
Свойства Область определения – множество , кроме . Множество значений – множество , кроме Функция – нечетная. Функция является убывающей на промежутке и Свойства: Область определения – множество , кроме . Множество значений – множество , кроме . Функция – нечетная. Функция является убывающей на промежутке и Хорошо, ребята, скажите, к какому классу из представленных принадлежат наши функции и .
I |
|
II |
|
III |
|
IV |
|
V | – положительное действительное нецелое число |
(к VI классу).
Давайте теперь выявим свойства функций, принадлежащих к классу функций
Свойства Область определения – множество , кроме . Множество значений – множество , кроме . Функция – нечетная, так как . Функция является убывающей на промежутке и .
Далее мы рассматриваем функции и (два ученика выходит к доске, и изображают графики этих функций, остальные ученики проверяют их построения)
Свойства Область определения – множество . Множество значений – множество . Функция – нечетная. Функция возрастающей на всей действительной оси.
Свойства: Область определения – множество . Множество значений – множество . Функция – нечетная. Функция возрастающей на всей действительной оси. Хорошо, ребята, скажите, к какому классу из представленных принадлежат наши функции и .
I |
|
II |
|
III |
|
IV |
|
V | – положительное действительное нецелое число |
(к II классу).
Давайте теперь выявим свойства функций, принадлежащих к классу функций
Свойства Область определения – множество . Множество значений – множество . Функция – нечетная, так как . Функция возрастающей на всей действительной оси.
Далее мы рассматриваем функции и (два ученика выходит к доске, и изображают графики этих функций, остальные ученики проверяют их построения)
Свойства Область определения – положительные числа . Множество значений – положительные числа . Функция является убывающей на промежутке .
Свойства: Область определения – положительные числа . Множество значений – положительные числа . Функция является убывающей на промежутке . Хорошо, ребята, скажите, к какому классу из представленных принадлежат наши функции и .
I |
|
II |
|
III |
|
IV |
|
V | – отрацательное действительное нецелое число |
(к Vклассу).
Давайте теперь выявим свойства функций, принадлежащих к классу функций
Свойства Область определения – положительные числа . Множество значений – положительные числа . Функция является убывающей на промежутке В результате получается заполненная канва – таблица.
- 1. Цели и задачи изучения курса алгебры, алгебры и начал анализа в 9-11 классах
- 2. Понятие функции в мат-ке и в школьном курсе мат-ки. Формирование понятия функции в школьном курсе мат-ки
- 3. Знания и умения школьников, связанные с понятием функции. Методика введения понятия функции
- 4. Методика изучения линейной функции
- 5. Методика изучения квадратичной функции
- 6. Методика изучения общих свойств функции
- 7. Расширение понятия степени. Методика введения понятия степени с целым показателем
- 8. Методика введения арифметического корня с натуральным показателем, степени с рациональным показателем
- 9. Определение степени с действительным показателем и её свойства
- 10. Теоретические основы изучения степенной функции
- 11.Урок обобщения и систематизации по теме «Степенная ф-ция»
- 12.Проект изучения темы «Арифметическая и геометрическая прогрессии» (9 класс). Урок решения ключевых задач (метод уде)
- Глава 4, §§14-16.
- Глава 4, §§14-16.
- Ход урока
- 12. Теор. Основы изучения темы «Арифметическая и геометрическая прогрессии»
- 13. Методика изучения показательной функции
- 14. Теоретические основы изучения логарифмической функции. Методика введения понятия логарифма
- 1. Мотивационно-ориентировочный этап
- 2. Содержательный этап.
- 15. Разработка урока-лекции «Логарифмическая функция, её свойства и график»
- I. Мотивационно-ориентировочная часть.
- II.Содержательная часть.
- 16. Методические основы введения и изучения элементов тригонометрии: числовая окружность, числовая окружность на координатной плоскости
- 17. Методические основы введения и изучения элементов тригонометрии: определение синуса, косинуса, тангенса и котангенса числа (угла)
- 17. Методические основы введения и изучения элементов тригонометрии: определение синуса, косинуса, тангенса и котангенса числа (угла)
- 18. Теоретические основы изучения темы «Тождественные преобразования тригонометрических выражений». Урок решения ключевых задач
- 19. Методические рекомендации к изучению тригонометрических функций. Методика изучения свойства периодичности функции
- 21. Проект урока-лекции «Решение уравнений и неравенств Арксинус числа. Свойства арксинуса числа»
- 22. Проект урока-лекции «Решение уравнений и неравенств Арккосинус числа. Свойства арккосинуса числа»
- 23. Проект урока-лекции «Решение уравнений и неравенств Арктангенс числа. Свойства арктангенса числа»
- 24. Методика обучения решению триг. Уравнений и неравенств. Основные приёмы решения триг. Уравнений
- Семинар-практикум по теме: «Основные приёмы решений тригонометрических уравнений».
- 25. Логические основы решения уравнений и неравенств в старших классах. Методические рекомендации к изучению понятий равносильные уравнения, уравнения – следствия, теорем о равносильности уравнений
- 26. Методика обучения учащихся решению частных видов уравнений и неравенств. Построение урока решения задач (на примере темы «Логарифмические уравнения и неравенства»)
- 2.Операционно-познавательный этап.
- 1. Решите уравнение:
- 2) Решите уравнение: .
- 3) Решите уравнение:
- 4) Решите уравнение: .
- 6) Решить неравенство: .
- 3.Рефлексивно-оценочный этап.
- 27. Организация заключительного повторения в 11 классе темы «Уравнения и неравентсва». Урок-лекция «общие методы решения уравнений»
- 1 Группа.
- 2 Группа.
- 3 Группа.
- 28. Методика введения понятий предела функций в точке и непрерывности функции
- 29. Методика введения понятия производной функции
- 30. Методика изучения геометрического смысла производной, уравнения касательной к графику функции
- 31. Теоретические и методические основы изучения темы «Применение производной к исследованию функции»
- 32. Теоретические и методические основы изучения первообразной и интеграла
- 33. Причины включения в школьный курс математики элементов вероятностно-статистической линии. Основные цели изучения элементов теории вероятностей и математической статистики
- 34. Теоретические и методические основы изучения теории вероятностей в школьном курсе математики 9-11 классов