logo
методика математики книга

§44. Ознайомлення з дробами

У 4 класі актуалізують знання школярів про частини: їх утворення, позначення, знаходження частини числа та числа за його відомою частиною, вчать порівнювати частини.

Порівнюють частини тільки з опорою на унаочнення (мал. 140).

Мал. 140

Користуючись малюнком, учні з'ясовують, наприклад, скільки четвертих частин у половині, скільки восьмих частин у цілому і т. ін. Наочно бачать, що 1/4 < 1/2; 1/2 > 1/8; 1/8 > 1/10 і т. ін.

Учні мають зрозуміти, що коли ціле поділити на рівні частини, то кожна частина буде менша від цього цілого; чим на більшу кількість частин поділено ціле, тим меншою буде кожна його частина.

Із дробами учні ознайомлюються, виконуючи під керівництвом учителя такі вправи:

1. На скільки рівних частин поділено кожний квадрат (мал. 141)?

Мал. 141

Як називається незаштрихована частина у квадраті? Скільки таких частин у квадраті заштриховано?

2. Полічіть, на скільки рівних частин поділено кожний круг (мал. 142). Скільки таких частин заштриховано?

Мал. 142

Методика викладання математики в початкових класах

273

Ми вже вміємо позначати цифрами одну частину числа. Яка частина першого круга заштрихована? (1/6). (Учитель записує це число на дошці). Скільки таких шостих частин заштриховано у другому крузі? (2). Тобто заштриховано 2/6 частини. (Вчитель записує на дошці). Скільки таких шос­тих частин заштриховано у третьому крузі? І т. д.

Числа виду 1/2, 2/3, 3/4, 1/6, 2/3, 5/6 називаються дробовими числами. Число 5/6 — дріб, 5 — чисельник дробу, а 6 — знаменник дробу. Число під рискою дробу — знаменник дробу — показує, на скільки рівних частин поділено ціле. Число над рискою дробу — чисельник дробу — показує, скільки взято рівних частин цілого.

Для закріплення матеріалу учні виконують такі вправи:

а) запишіть у вигляді дробу, яку частину прямокутника заштриховано (мал. 143);

Мал. 143 б) прочитайте дроби і поясніть, як їх утворено (мал. 144).

тї

1 1 1 і

1

5

2 5

5 6

3 Я

І І І І І І І І

Мал. 144

Здобуті знання про дроби та їх зображення використовують під час розв'язування задач на знаходження дробу від числа. Пояснення знаходження дробу від числа подають на основі готового розв'язання.

Задача. Довжина відрізка АВ дорівнює 10 см. Чому дорівнює 3/5 цього відрізка ? (Мал. 145).

10 см ________VI

274

Розділ XII. Формування початкових уявлень про дроби

Розв'язання

1) Скільки сантиметрів в 1/5 відрізка АВ? 10:5 = 2 (см).

2) Чому дорівнює 3/5 відрізка АВ? 2-3 = 6 (см).

Відповідь. Довжина 3/5 відрізка АВ дорівнює б см. Пррпонують учням і абстрактні задачі на знаходження дробу-віц числа. Задача. Знайдіть 5/9 від 64 260. .-::■ удоці

64 260:9 • 5 = 35 700.

У 4 класі діти розв'язують складені задачі, що передбачають знаходження дробу, а саме:

1. Задачі, в яких треба знайти кілька частин відданого числа (знайти дріб від числа).

Задача. Маса гарбуза дорівнює 14 кг. Від гарбуза відрізали 2/7 його маси і зварили кашу. Скільки кілограмів гарбуза було витрачено на кашу?

2. Задачі, в яких треба знайти кілька частин від решти.

Задача. Площа дослідного поля становить 86 000 м2. Частину цього поля у вигляді прямокутної ділянки зі сторонами 320 м і 100 м засіяно гречкою. 3/4решти поля засіяно просом. Скільки квадратних метрів становить площа поля, засіяна просом?

3. Задачі, в яких треба знайти кілька частин від того числа, яке знайшли. Задача. Туристу треба було пройти 180 км. За перший день він пройшов

1/6 всього шляху, а за другий — 4/5 того шляху, який пройшов за перший день. Скільки кілометрів пройшов турист за два дні?

Завдання на знаходження дробу від числа часто пропонують для усних обчислень. Вони корисні для закріплення учнями знань про співвідношення між мірами величин. Наприклад:

1. Скільки метрів у 3/4 км? У 2/5 км? У 3/10 км?

2. Скільки кілограмів у 3/4 ц? У 3/4 т? У 3/5 ц?

3. Знайдіть: 2/7 від 35; 3/4 від 40; 2/5 від 200.

РОЗДІЛ XIII

ПРОПЕДЕВТИКА АЛГЕБРИ В ПОЧАТКОВИХ КЛАСАХ

Початковий курс математики містить елементи алгебри. Вивчення елементів алгебри в початкових класах сприяє узагальненню знань учнів про число, арифметичні дії і відношення. Школярі одержують початкові відомості про математичні вирази, числові рівності і нерівності, ознайомлюються з буквеною символікою, розв'язують задачі з буквеними даними, вчаться розв'язувати найпростіші рівняння і нерівності, набувають початкових умінь розв'язування задач на одну дію за допомогою рівнянь, у них формуються перші уявлення про функціональну залежність.