§55. Перші кроки в створенні методики арифметики. Метод вивчення чисел і метод вивчення дій
Методика викладання математики як окрема педагогічна наука зароджувалася у працях педагогів. Ян Амос Коменський (1592—1670), висвітлюючи загальні дидактичні правила, багато уваги приділяв вивченню арифметики. Він уперше в історії дидактики охарактеризував наочність як "золоте правило навчання". Я. Коменський обґрунтував принцип природовідповідності виховання (необхідність враховувати природу дитини), дав теоретичне обгрунтування, класно-урочної системи навчання. Він був ознайомлений з досвідом5 братських шкіл в Україні.
Йоганн Генріх Песталоцці (1746—1827), швейцарський теоретик і практик педагогіки, основоположник дидактики початкового навчання, у своїх працях розробляв методику навчання дітей арифметики. Він висунув ідею розви-вального навчання, сформулював дидактичні принципи послідовності і' поступовості у навчанні, відстоював принцип систематичності. Й.Песталоцці —, основоположник методики початкового навчання мови, арифметики, елементарної геометрії, географії. Методику початкового навчання мови, лічби і вимірювання він намагався настільки спростити, щоб нею з успіхом' могли користуватися не тільки вчителі початкової школи, а й будь-яка мати-селянка під час занять зі своєю дитиною.
Й. Песталоцці замінив механічне запам'ятовування в арифметиці вільним міркуванням, автоматизм письмових обчислень за правилами — усними вправами над числами першої сотні. Він започаткував концентричне розміщення арифметичного матеріалу, виділивши сотню в окремий концентр. Славетний український педагог Костянтин Дмитрович Ушинський (1824— 1870) у своїх працях грунтовно досліджує методику початкового навчання лічби. К. Ушинський — основоположник педагогічної науки у нашій країні — обґрунтував принцип наочності і науково розробив способи його здійснення, сформулював низку цінних порад і вказівок щодо вивчення арифметики і геометрії у школі. Цей вчений вимагав конкретизувати абстрактні математичні поняття і зробити арифметику знаряддям пізнання навколишньої дійсності, вказував, що навчання має будуватися на живому спогляданні, конкретних образах з додержанням принципу від конкретного до абстрактного. Основними засобами наочного навчання він вважав предмети в натурі, моделі, малюнки, що відображають предмети. Ступінь викорис-Аання наочних засобів зумовлюється віком дітей: чим молодший вік дітей, тим ширше треба застосовувати наочність.
К. Ушинський високо оцінив значення педагогічних ідей Й. Песталоцці, науково обґрунтував і розвинув їх. Розробки українського педагога були підхоплені передовими методистами і поширювались у практиці викладання у школах нашої держави.
Учні та послідовники Й. Песталоцці, використовуючи визначений ним принцип наочності у викладанні арифметики, спрямували його на вивчення324
Розділ XVII. Короткий історичний огляд розвитку методики викладання арифметики
чисел, а не на дії над ними. Метод вивчення чисел у навчанні арифметики створив методист А.В. Грубе. На його думку, всі числа першої сотні доступні для безпосереднього сприймання дітьми. За методом А. Грубе кожне число в межах 100 порівнюється з попереднім і "вимірюється" різницевим та кратним відношенням. У результаті такого вивчення учень мав запам'ятати склад кожного числа з доданків і співмножників. Що ж до арифметичних дій, то, на думку А. Грубе, прийоми їх виконання мають самі собою випливати зі знання складу різних чисел.
Викладання арифметики за методом вивчення чисел не сприяло розумовому розвитку дітей і не мало освітнього значення. Учні зовсім не розрізняли дій, не розуміли їх суті, не навчалися обчислювати. Помилкова думка А. Грубе про можливість дітей безпосередньо споглядати всі числа першої сотні створювала труднощі в навчанні арифметики, бо для додавання і віднімання в концентрі "Сотня" потрібно запам'ятати близько 5 тисяч різних числових комбінацій. Одноманітність прийомів вивчення кожного числа не відповідала психологічним особливостям учнів, втомлювала їх, вбивала будь-який інтерес до вивчення арифметики.
Метод А. Грубе доволі міцно закріпився в німецькій школі. Більшість учителів, які самі вчилися за цим методом, була інертна в справі поліпшення методів викладання і вважала спокійніше для себе вчити так, як заведено. У, "1842 році А. Грубе надрукував "Посібник з числення в елементарній школі, що базується на евристичному методі". Це підвищило його авторитет і збільшило число прихильників методу вивчення чисел.
Серед методистів пізніших часів у деяких країнах теж були прихильники методу А. Грубе, хоч вони і не поділяли цілковито всіх його думок,( Українсько-російський педагог Василь Андрійович Євтушевський (1836— 1888, нар. у м. Полтаві) вніс деякі зміни у метод А. Грубе. Він полегшив методику вивчення чисел від 1 до 20 і наступних чисел у межах 100. Вже у межах другого десятка, а потім першої сотні В. Євтушевський приділяв увагу обчислювальним способам відповідно до десяткового складу чисел і запроваджував метод вивчення дій після вивчення чисел першої сотні. Його твори, особливо "Методика арифметики" (1872) і "Збірник арифметичних задач" (1871), витримали багато видань і мали важливе значення в розвитку шкільної освіти.
З часом система Грубе—Євтушевського стала зазнавати дедалі гострішої, критики з боку методистів, педагогів, математиків, письменників (Л.М. Толстой, П.Л. Чебишев, С.А. Рачинський, О.І. Гольденберг, В.О. Латишев). Вони доводили, що метод вивчення чисел не відповідає особливостям дитячої психології. На думку Л.М. Толстого, метод вивчення чисел породжував "нестерпну нудьгу".
Основоположником методу вивчення дій у школах Росії та України був П.С. Гур'єв. На допомогу вчителям початкових шкіл він видав "Керівництво, до викладання арифметики" (1839-1842). Арифметичний матеріал автор радив вивчати за концентрами так: перший десяток, перша сотня, багатоцифрові числа. Додавання і віднімання в межах 10 вивчали після засвоєння нумерації
•Методика викладання математики в початкових класах
325
чисел першого десятка, додавання і віднімання в межах 20 виділяли в окрему тему при вивченні додавання і віднімання в межах першої сотні. У 1861 році була надрукована остання праця П.С. Гур'єва "Практична арифметика". Передові вчителі того часу цілковито поділяли погляди цього педагога, схвалювали новий метод вивчення арифметики і використовували його в ;своїй практиці. Однак П. Гур'єв не дав наукового обґрунтування переваги свого методу над методом вивчення чисел.
Обгрунтував метод вивчення дій В.О. Латишев (1850-1912). У 1880 році була надрукована його праця "Керівництво до викладання арифметики". В ній автор розкритикував метод вивчення чисел і висвітлив основні ідеї методу вивчення дій. На його думку, найголовніше завдання викладання арифметики полягає в тому, щоб дати дітям правильне поняття про дії і навчити свідомо їх виконувати, причому усні обчислення мають бути основою письмових обчислень. Проте боротьба В. Латишева з методом А. Грубе ще не дала практичних наслідків.
Остаточного удару методові вивчення чисел завдав О.І. Гольденберг (1837-1902). Він докладно проаналізував метод А. Грубе і довів повну необґрунтованість його положень. Мету навчання дітей арифметики О. Гольденберг вбачає не тільки у свідомому виконанні арифметичних дій, а й у вмінні застосовувати ці дії до розв'язування задач практичного змісту. Цей педагог розробив "Методику початкової арифметики" (1885) й уклав "Збірник задач і прикладів для навчання початкової арифметики", що замінили книги В.А. Євтушевського. Задачі О. Гольденберга були життєві за своїм змістом, відрізнялись точністю і стислістю формулювань, були добре систематизовані, його задачники для початкової школи перевидавались близько 40 разів. Останнє видання "Методики" побачило світ у 1914 р. Завершив побудову методики на основі вивчення дій К.П. Аржеников (1862-1933).
На початку XX століття велику роль у розвитку методики викладання арифметики відіграли праці СІ. Шохор-Троцького (1853-1925, нар. у м. Кам'янці-Подільському), К.Ф. Лебединцева (1879-1925, нар. у м. Радомі, нині — Польща), Т.Г. Лубенця (1855-1936, нар. у м. Кролевці, нині — Польща). Проте навчання і видання підручників українською мовою було заборонено.
- §1. Предмет і завдання методики початкового навчання математики
- §2. Методика початкового навчання математики та інші науки -
- §3. Методи наукового дослідження, що застосовуються в процесі розробки методики викладання початкового курсу математики
- §4. Освітні, виховні й розвивальні завдання навчання математики в початкових класах
- §5. Зміст початкового курсу математики. Аналіз програми з математики для початкових класів
- §6. Математична підготовка дітей в дитячому садку
- §7. Наступність у навчанні математики між початковими і 5—6 класами
- §8. Підручник — основний засіб навчання математики в початкових класах
- §9. Предметне й табличне унаочнення. Використання и структурних схем і малюнків. Дидактичні матеріали
- 16 Кг?, на 20 кг більша
- §10. Інструменти, прилади й моделі, технічні засоби навчання
- §11. Засоби зворотного зв'язку
- §12. Контроль, корекція та закріплення знань учнів
- Перевірка домашньої роботи
- Усне опитування
- Усні обчислення
- Звичайні приклади
- Завдання ущільненого характеру
- Ігри та ігрові форми завдань
- §13. Методика опрацювання нового матеріалу
- §14. Закріплення й узагальнення знань учнів
- Подання домашнього завдання
- Підсумок уроку
- Підготовка вчителя до уроку
- §15. Огляд інших різновидів уроків математики
- §16. Форми організації навчання учнів математики на уроці
- §17. Перевірка й оцінювання знань, умінь і навичок учнів з математики
- Підсумкове оцінювання знань, умінь і навичок
- §18. Особливості уроку математики в 1 класі
- §19. Нумерація чисел в межах 10
- §20. Додавання і віднімання в межах 10
- §22. Складання та засвоєння таблиць додавання і віднімання з переходом через десяток
- §24. Усне і письмове додавання та віднімання в межах 100 шд
- §25. Складання і засвоєння таблиць множення та ділення
- §26. Нумерація чисел 101-1000
- §27. Додавання і віднімання в межах 1000
- §29. Письмове множення і ділення в межах 1000
- §29. Письмове множення і ділення в межах 1000
- §30. Методика вивчення нумерації багатоцифрових чисел
- §31. Додавання і віднімання багатоцифрових чисел
- §32. Множення і ділення багатоцифрових чисел
- §33. Вимірювання довжини і площі
- §34. Ознайомлення з масою тіл
- §35. Формування часових уявлень в учнів. Ознайомлення з поняттям швидкості
- §36. Роль і місце задач у початковому курсі математики. Функції текстових задач
- §37. Складові процесу розв'язування задач
- §38. Культура запису розв'язань задач
- §38. Культура запису розв'язань задач
- §39. Формування навичок розв'язувати прості задачі
- §39. Формування навичок розв'язувати прості задачі
- §40. Розвиток уявлень учнів про складену задачу і процес її розв'язування
- §41. Розв'язування типових задач
- §42. Розвиток умінь учнів розв'язувати складені задачі
- §43. Ознайомлення з частинами
- §44. Ознайомлення з дробами
- §44. Ознайомлення з дробами
- §45. Числові вирази. Числові рівності і нерівності. Вирази зі змінною
- §46. Рівняння. Нерівності зі змінною
- §47. Формування уявлень учнів про функціональну залежність
- §48. Розвиток просторових уявлень молодших школярів
- §48. Розвиток просторових уявлень молодших школярів
- §49. Формування уявлень про лінії і відрізки
- §50. Ознайомлення з кругом і многокутником.
- §51. Математичні ранки
- III. "Риболови".
- IV. "Розв'яжи задачу-вірш".
- § 52. Математичні олімпіади
- § 52. Математичні олімпіади
- §53. Виховна ефективність уроку математики
- §54. Планові та стихійно-причинні виховні моменти на уроках математики
- §55. Перші кроки в створенні методики арифметики. Метод вивчення чисел і метод вивчення дій
- §56. Початкова математична освіта в 1920—1990 роках
- §57. Початкова математична освіта в Україні
- §57. Початкова математична освіта в Україні
- §1. Предмет і завдання методики початкового навчання математики......................8