Логическое строение геометрии
Геометрия – дедуктивная наука, так как в основу ее построения положен аксиоматический метод.
Как строится геометрия?
1) Выделяется небольшое число основных, первоначальных, т. е. неопределяемых понятий. Другие понятия последовательно определяются через основные (например, отрезком называется часть прямой, ограниченная двумя точками).
2) Все утверждения формулируются при помощи основных понятий и понятий, уже получивших определение.
3) Выделяется небольшое число утверждений (аксиом), принимаемых без доказательства. Эти утверждения описывают свойства основных понятий и связи между ними. Все остальные утверждения последовательно доказываются в качестве теорем.
Построение математической научной теории предполагает выделение конечной системы аксиом, обладающей свойствами непротиворечивости, полноты и независимости. Важный элемент в понимании структуры дедуктивных теорий – это известная свобода выбора системы аксиом и основных понятий. Аксиомы не есть «очевидные истины, не требующие доказательства». Одно и то же утверждение в рамках одной системы – аксиома, в рамках другой – теорема.
Пример. Вместо аксиомы параллельных прямых можно принять в качестве аксиомы утверждение о том, что сумма углов треугольника равна 180º. Тогда утверждение «Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной» можно доказать как теорему (задание №1 для самостоятельной работы).
Основные понятия и аксиомы – это фундамент для построения геометрии. От того, какие понятия приняты за основные и какие предложения приняты за аксиомы, зависит ее содержание. Известны геометрии Евклида, Римана, Гильберта, Лобачевского. Школьный курс геометрии построен на геометрии Евклида. В качестве аксиом Евклид выбрал такие предложения (постулаты), которые, как он считал, можно непосредственно проверить простейшими инструментами. Его руководство по математике («Начала» – III в. до н.э.) представляет первый систематический курс геометрии, в котором логические операции сочетаются с конструктивными, – это и есть методологический принцип Евклида. Именно на этих принципах и строится школьный курс геометрии.
Таким образом, геометрия – дедуктивная наука, и школьный курс геометрии отражает это. Но в школьном курсе никогда не существовало геометрии, удовлетворяющей третьему требованию. Это просто невыполнимо. Невозможно осуществить строгое логическое построение геометрии в школе, но именно в этом курсе учащиеся должны получить наиболее полные представления о дедуктивных теориях. Чтобы снять это противоречие, необходимо искать компромиссы при построении школьного курса геометрии, а именно:
не всем понятиям давать определения. Часть из них должна опираться на опыт и интуицию учащихся;
часть понятий вообще следует опускать;
не все свойства необходимо формулировать и, тем более, доказывать.
Однако в целом дедуктивный характер школьного курса геометрии сохраняется. И показать это учащимся – задача учителя.
Итак, в школьном курсе геометрии есть основные понятия, есть система аксиом, есть стремление обосновывать любое суждение на основе имеющихся утверждений.
Задание № 1 для самостоятельной работы.
1. Сравните основные понятия геометрии Д. Гильберта и геометрии А.Н. Колмогорова.
2. Докажите, что через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной, приняв за аксиому утверждение, что сумма углов треугольника равна 180º.
3. Сравните аксиоматики (в том числе стереометрии) А.В. Погорелова и Л.С. Атанасяна.
- Методика изучения математики в основной школе
- Цай и.С., Ярославцева л.Г., составление, 2011
- Педагогический университет», 2011 Оглавление
- Лекция 1. Тождественные преобразования выражений
- Введение
- Основной понятийный материал
- Теоретические основы тождественных преобразований выражений
- 3. Место, содержание и значение темы в школьном курсе математики
- 3.2.1. Общеобразовательное и развивающее
- 3.2.2. Воспитательное значение
- 3.2.3. Практическое значение
- 4. Изучение тождественных преобразований выражений в пропедевтическом курсе математики
- 5. Некоторые методические особенности изучения тождественных преобразований в систематическом курсе алгебры
- Задания для самостоятельной работы
- Список литературы
- Методические рекомендации для организации самостоятельной работы студентов по теме «Тождественные преобразования выражений»
- Алгоритмы
- 1. Вынесение множителя из-под знака квадратного корня
- Внесение множителя под знак квадратного корня
- Индивидуальные задания
- Список литературы для выполнения индивидуальных заданий
- Лекция 2. Содержательная линия «уравнения и неравенства» в школьном курсе математики
- Введение
- 1. Место и значение уравнений и неравенств в шкм
- 2. Теоретические основы линии уравнений и неравенств
- 3. Основные этапы изучения уравнений и неравенств4
- 4. Введение понятия уравнения (неравенства с переменной)
- 5. Методика обучения решению уравнений и неравенств
- Решение уравнений первой степени с одной переменной
- Решение уравнений с одной переменной степени выше первой
- Введение новой переменной как прием равносильных преобразований уравнений
- Список литературы
- Методические рекомендации к изучению темы «Неравенства» в школьном курсе математики
- Общее задание:
- Темы индивидуальных заданий
- Темы рефератов
- Список дополнительной литературы
- Лекция 3. Обобщение понятия степени
- Введение
- Основная цель и значение изучения данной темы
- 2. Характеристика этапов по обобщению понятия «степень» и подготовка к изучению показательной функции на множестве действительных чисел
- 3. Примерная схема рассуждений, относящихся к методике уроков систематизации и обобщения сведений о степенях
- Список литературы
- Задания для самостоятельной работы
- Лекция 4. Изучение геометрии в основной школе
- Логическое строение геометрии
- Возможные методические подходы к построению школьного курса геометрии
- 3. Основные этапы изучения геометрии в школе
- 4. Первые уроки систематического курса геометрии
- Некоторые методические рекомендации к первым урокам геометрии
- Список литературы
- 1. Нормативные документы:
- 2. Методики:
- 3. Учебники и учебные пособия для учащихся:
- 4. Пособия для учителя:
- Методические рекомендации для организации самостоятельной работы студентов по теме «Изучение геометрии в основной школе»
- Индивидуальные задания:
- Приложение а.Д Александров о геометрии
- И.Я. Виленкин, с.И Шварцбурд Равенства, тождества, уравнения, неравенства
- Учебное издание методика изучения математики в основной школе
- Авторы-составители :
- 614990, Г. Пермь, ул. Сибирская, 24, корп. 2, оф. 71,
- 614990, Г. Пермь, ул. Сибирская, 24, корп. 1, оф. 11