logo
Учебное пособие_Методика

Теоретические основы тождественных преобразований выражений

2.1. Существуют две точки зрения на тождественные преобразования рациональных выражений. Это алгебраическая, заключающаяся в том, что изучаются действия над выражениями. Для школы (в частности для седьмого и восьмого классов, где изучаются тождественные преобразования целых и дробно-рациональных выражений) это не представляется возможным, так как для четкого обоснования действий над рациональными выражениями необходимо знание таких понятий, как кольцо многочленов и поле рациональных дробей. Вторая точка зрения – теоретико-функциональная, рассматривающая многочлен как целую рациональную функцию (одного или нескольких переменных), а алгебраическую дробь как дробно-рациональную функцию. Подробнее об этом – в статье И.В. Баума и Ю.Н. Макарычева [1].

Для школьной алгебры представляет интерес и тот и другой подход. Нельзя недооценивать или отказываться ни от одного из них: в одних случаях приходится сосредоточивать внимание учащихся на алгебраической стороне вопроса, в других – интерес представляет функциональная сторона. Поэтому полезно объединение этих двух позиций. Например, при изучении тождественных преобразований целых выражений полезно:

Следует отметить, что действия над алгебраическими выражениями в том смысле, который принят в арифметике, выполнить нельзя. Выполнить обозначенные действия возможно только при каждом конкретном наборе числовых значений входящих в эти выражения букв.

Действия можно лишь обозначить: сложение обозначается знаком «+», вычитание – знаком «– », умножение – «∙», деление – чертой дроби, например, , а не : . (Объясните, почему?)

2.2. К определению алгебраических выражений целесообразно подходить с позиции математического анализа (см. рис.1), считая многочлен целой, а алгебраическую дробь – дробно-рациональной функцией. Это значит, что алгебраические выражения определяются в зависимости от операций, обозначенных над переменными и постоянными.

Определение 1. Рациональным называется такое алгебраическое выражение, которое составлено из постоянных, переменных, знаков арифметических действий и скобок.

Определение 2. Рациональное алгебраическое выражение называется целым, если в нем не обозначено деление на переменную.

Определение 3. Рациональное алгебраическое выражение называется дробным, если в нем обозначено деление на выражение, содержащее переменную.

2.3. Изучение тождественных преобразований требует хорошего владения понятием равенства. Равенством называют предложение, состоящее из двух выражений, соединенных знаком «= ».

Для изучения тождественных преобразований интерес представляют верные равенства, обладающие следующими свойствами (аксиомы равенства):

  1. А = А – аксиома рефлексивности.

  2. Если А = В, то В = А – аксиома симметричности.

  3. Если А = В и В = С, то А = С – аксиома транзитивности. Это свойство имеет существенное значение в тождественных преобразованиях.

2.4. Законы арифметических действий следует считать аксиомами тождественных преобразований.

Выводы

Основными положениями, на которых строится теория тождественных преобразований, являются следующие.

  1. Действия над целыми алгебраическими выражениями только обозначаются.

  2. Пусть a, b, c – любой одночлен или многочлен, тогда:

т.е. и .

Кроме этих аксиом выполняются аксиомы о действиях с нулем и единицей, а также свойства равенств:

Все остальные преобразования должны быть обоснованы ссылкой на эти аксиомы, введенные определения или уже доказанные теоремы.

Пример. Доказать справедливость равенства .

Доказательство. Рассмотрим разность а и b. По определению действия вычитания:

=

(используем свойство – ассоциативность сложения)

= =

(определение суммы противоположных выражений)

= =

( аксиома нуля)

= .